# PRODUCT CATALOGUE

### KULIČKOVÉ ŠROUBY KUŘIM, a.s. "We always have the right solution"

**The actual version** can be found at http://www.ks-kurim.cz/en/download



#### 1. INTRODUCTION

| 2. PRODUCT RANGE                                               |  |
|----------------------------------------------------------------|--|
| 2.1. General information about ball screws                     |  |
| 2.2. Standard positioning ball screws (ST)                     |  |
| 2.3. High-load ball screws (HL)                                |  |
| 2.4. High-speed ball screws (HS) 11                            |  |
| 2.5. Ball screws for low speed and precise positioning (PP) 12 |  |
| 2.6. High-efficiency ball screws (HE)                          |  |
| 2.7. Ball screws with a driven nut                             |  |
| 2.8. Transport ball screws (TS)                                |  |
| 2.9. Trapezoidal screws (Tr)                                   |  |
| 2.10. Other products                                           |  |
| 2.10.1. Linear actuators                                       |  |
| 2.10.2. Guide rods                                             |  |
| 2.10.3. Telescopic ball screws                                 |  |
| 2.10.4. Threadless ball screws                                 |  |
|                                                                |  |
| 3. TECHNICAL PARAMETER TABLES 19                               |  |
| 3.1. Description and meaning of used symbols                   |  |
| 3.2. Designation of ball screws                                |  |
| 3.3. Tables                                                    |  |
|                                                                |  |
| 4. CALCULATION PART                                            |  |
| 4.1. Ball screw life                                           |  |
| 4.2. Ball screw limit values determination                     |  |
|                                                                |  |
| 5. OTHER INFORMATION                                           |  |
| 5.1. Quality                                                   |  |
| 5.2. General terms & conditions                                |  |
| 5.3. Operating conditions                                      |  |
|                                                                |  |



The establishment of the company **KULIČKOVÉ ŠROUBY KUŘIM**, **a.s.** was closely connected with the machine tools manufacturing facility in Kuřim, the foundations of which were laid in **1924**, in the engineering plant of the former Czechoslovakian gun factory in Brno. At that time, the manufacturing of special machine tools for arms production started in the factory's machine repair shop. In **1929**, the company began to manufacture machine tools for its internal use and shortly afterwards also for the domestic market.

However, the real boom in machine tool manufacturing started in **1932**. By the following year, Zbrojovka milling machines had already penetrated the markets in England, Russia, Switzerland, Italy, the Netherlands, Sweden, South Africa and Finland.

Due to the high demand for precision lathes and high-performance milling machines from Zbrojovka, a new manufacturing plant was founded in Kuřim in **1942**.

The production of CNC machines in the 1960s led to the development of new and more sophisticated machinery components. Low mechanical efficiency of the lead (trapezoidal) screws became a serious barrier to the building of CNC machines. Therefore, these motion components were gradually replaced with ball screws, which have been manufactured in Kuřim since **1967**.

The high efficiency of the ball screws and the possibility to eliminate axial play using them are the basic and significant conditions for the implementation of CNC control systems in machine tools and in other machinery and industrial applications.

Ball screws were produced by the company called TOS KUŘIM until **1996**. Afterwards the company was privatized in **1996** and the limited company TOS KUŘIM–KŠ, s.r.o. was established. In **1997**  the name of the company was changed to **KULIČKOVÉ ŠROUBY KUŘIM, s.r.o.** On 1 January 2001 it was transformed into a joint stock company. On 25 July 2005 ALTA a.s., a Czech trading company, became the majority owner of the company.

Since 1 September 2011 the company KULIČKOVÉ ŠROUBY KUŘIM, a.s. has changed its majority owner and has become a member of the Swiss holding OC Schweiz Maschinen Bau AG, which associates a number of manufacturing facilities that deliver their products to the producers of machine tools, injection moulding and plastics industry, and other industrial sectors.

The company **KULIČKOVÉ ŠROUBY KUŘIM, a.s.** currently manufactures ball screws in the precision classes **IT1**, **IT3**, **IT5**, **T5** and **T7** under the **ISO 3408** and **DIN 69051** standards. Our products meet the most demanding requirements for the design of machine tools, automated lines and single-purpose machines due to their excellent technical parameters such as rigidity, life, high efficiency and smooth run.

The company KULIČKOVÉ ŠROUBY KUŘIM, a.s. also manufactures and supplies ISO and ČSN compliant lead (trapezoidal) screws for conventional machines and many different industrial applications.

The company also produces cylindrical rods for linear guides. They are characterized by high efficiency, accuracy and low passive resistance. Our guide rods are used in combination with linear bushings produced by the world's leading producers.

The high level of the quality management system has been certified annually since **2000** under the **ISO 9001** standard. The currently valid quality management system is in compliance with **EN ISO 9001:2008** and has been certified by **TÜV NORD CERT GmbH**.

KULIČKOVÉ ŠROUBY KUŘIM, a.s. is a member of the following associations:



Association of Engineering Technology



CONTRACTOR

Brno Regional Chamber of Commerce



CECIMO



### 2.1. General information about ball screws

**Ball screws** (hereinafter also BS) are structural components (non self-locking) that convert rotary motion into smooth, accurate and reversible linear motion with high efficiency, rigidity, precision and reliability.

Ball screws require an accurate and rigid mount with precise alignment of the ball screw longitudinal axis and the guiding surfaces within 0.02 mm/1,000 mm. At the same time, the nut position should guarantee its perpendicularity to the longitudinal axis of the ball screw within 0.02 mm/1,000 mm.

The nuts can be loaded only in the axial direction. In the case of long and thin ball screws the unit's design should eliminate the deflection of the shaft due to its own weight.

The precise quality of the screw grooves guarantees high endurance against heat generation and wear. Other advantages of the ball screws are low driving torque (even in the case of preloaded nuts) and high linear accuracy.

Ball screws are used in different applications mainly for their high efficiency (given by the low rolling resistance of the balls in the thread shell) during the transition of the rotary to linear motion. Ball screws are mainly used in the following industrial areas:

- machine tools and metal forming machines
- /injection moulding machines
- packaging machines
- lifting equipment

2

- handling and automation technology
- medical equipment(),004 | A
- pharmaceutical industry (medical and laboratory instruments)
- automotive industry, aerospace industry, etc.



The performance of the grooves in the ball screw subcomponents determines the ball screw functional quality; therefore these components are hardened and afterwards, in the case of precision ball screws, also ground in order to guarantee the required two-point contact of the balls in the so-called Gothic (ogival) thread profile.



The ball screws are made of steel with grade **ČSN 14 260, CF53** or **42CrMo4** (shafts) and **14 109** or **14 209** (nuts). The nut and the threaded part of the shaft are hardened to **58-60 HRC**. Minimum strength of the core and the non-hardened parts of the shaft is  $\mathbf{R}_m = \mathbf{650}$  **MPa**. The resulting quality is verified by long-term life tests and final analysis of the changes in the functional sections of the transmission after reaching the defined wear limits. Based on the obtained results and bearing in mind the operating conditions, we can guarantee the actual service life of the product, or we can offer the best solution based on the specific requirements of the customer.

The selection of the right type and design of a ball screw from our standard product range depends on the required application, technical characteristics and the operating conditions.

# The properties of the ball screws are characterized by $\triangle$ the following parameters:

- Nominal thread diameter
- Thread pitch
- Thread precision class
- Load capacity, rigidity and life
- Travel speed
- Ball recirculation system in the nuts
- Other parameters







### Nominal thread diameter

**The nominal thread diameter** determines the column strength of the ball screw shaft in relation to its length and support. The nominal diameter of the shaft **d**<sub>o</sub> has been used to derive the relation of its maximum rotational speed **n**<sub>max</sub> towards the recirculation speed of the balls in the used recirculation system and type of lubrication. The product of multiplying the nominal diameter and the rotational speed gives us a characteristic value limiting the application and the function of the ball screw, whereas the following limitations are applied:

### Internal ball recirculation with beds:

$$n_{max} = \frac{100.000}{d_0}$$

**External ball recirculation with shims:** 

$$n_{max} = \frac{70.000}{d_0}$$

**Recirculation segments and lids:** 

$$n_{max} = \frac{125.000}{d_0}$$

#### Thread pitch

The thread pitch (P) determines the dynamic properties of the recirculation system, whilst the precision class determines the resulting working accuracy of positioning. In our standard product range we offer pitches from **3 mm** to **50 mm** depending on the nominal diameters and recirculation types. The pitch size determines the maximum size of the balls and therefore influences the total number of balls in the recirculation system or in the working thread of the nut.

#### Thread precision class

Our ball screws are offered in several **precision classes** that are in compliance with the definitions of the standards **ISO 3408** and **DIN 69051**.

The precision classes are given in the following table:

| 2 |                       |       |         |       |       |           |       |        |        |
|---|-----------------------|-------|---------|-------|-------|-----------|-------|--------|--------|
|   | Travel deviation      | Gro   | und thr | ead   | Whi   | irled thr | ead   | Rolled | thread |
|   | per 300 mm            | IT1   | IT3     | IT5   | IT5   | T5        | T7    | T5     | T7     |
|   | thread length<br>(mm) | 0.006 | 0.012   | 0.023 | 0.023 | 0.023     | 0.052 | 0.023  | 0.052  |

The travel deviations for whirled and rolled ball screws with precision classes **T5** and **T7** are in compliance with the **ISO 3408-3** standard for transport ball screws.

#### Load capacity, rigidity and basic rating life

**Load capacity** is another technical parameter which is important for the proper selection of a ball screw which, similarly to the ball bearings, is characterized by the static load capacity  $C_o$  (defined as the load resulting permanent deformation of the functional thread or ball surface with diameter  $D_w$  equalling **0.0001**  $D_w$ ) and the dynamic load capacity  $C_a$  (corresponding to the load that the ball screw can theoretically endure reaching a basic rating life of one million revolutions  $L_{10} = 1 \times 10^6$ ).

The determination of the **basic rating life** (which is defined as the value expressing with **90 %** reliability the number of the shaft revolutions, in relation to the nut unit under load **F**, until the first signs of material fatigue or wear of the functional transition elements appear) is done by the following formula:

$$L_{10} = \left(\frac{C_a}{F}\right)^3 \times 10^6 \text{ (revolutions)}$$

Another important characteristic property of the ball screws is their **rigidity R**, which is defined as a ratio of the external axial load  $\mathbf{F}_{a}$  to the axial travel of the nut  $\boldsymbol{\delta}$  onto the ball screw shaft:



In order to achieve high rigidity and at the same time to eliminate axial backlash, **preloading force F**<sub>v</sub> is applied in the transmission. For this reason the ratio between the axial force **F**<sub>a</sub> (at which a backlash still does not occur) and the preload **F**<sub>v</sub>, should meet the following condition:

 $F_v = 2,83$ e axial force F<sub>1</sub> and therefore t

The definition of the axial force  $\mathbf{F}_{a}$  and therefore the preload have to be done carefully based on the operating load of the ball screw, because the preload decreases the total life of the assembly.







#### Travel speed

The nut unit must be capable of managing the required speed and changes in speed while ensuring precise positioning and sufficient rigidity. In order to eliminate the undesirable inertial effect, it is recommended to solve the drive of the ball screw through a rotating nut, with a static hollow shaft to cool the assembly. By different combinations of the selected nominal diameter  $\mathbf{D}_{s'}$  the pitch  $\mathbf{P}$ , the lubrication type and the type of transmission, it is possible to come up with a wide spectrum of attainable travel speed values corresponding to the possibilities of the machine tool support drive. To attain maximum accelerations and minimize undesirable impacts, the most favourable application for medium-sized machining centres proves to be the use of high-speed ball screws **K 40×40** with a rotating nut driven by a motor with a transmission ratio **p** = 2:1. The transmission enables better selection of the electric drive unit according to its performance and acceleration. The technological application of the machine tool significantly influences the ball screw type selection. High-speed ball screws are suitable for HSC (high speed cutting) machining with high-speed feed (up to 80 min<sup>-1</sup>), while standard ball screws with lower pitch but higher rigidity are used for machines designed for conventional machining with lower spindle rotational speed, lower feeds and a deeper cut.

### Ball recirculation system in the nuts

**Standard types** of nut units are equipped with an internal ball recirculation system done by the so-called recirculation **deflectors**, which return the balls within one pitch of the ball screw, or in a recirculation **rib** containing several recirculation grooves in one body.

**Non-standard types** of nut units are equipped with an external ball recirculation system in a so-called **shim**, which returns balls within several pitches of the ball screw thread.

**Our high speed** bball screws (most often two-start) have nut units with special-design nut **caps** or radial **segments** smoothly transitioning the balls from the working area into a longitudinal axial hole in the nut.







The **segments** are also used in the one-start ball screws as a replacement of the deflectors.

#### Other parameters

#### Ball screw ends

Ball screw ends are manufactured according to the client's drawing or requirements for the shaft mounting.



#### Special-design ball screws

Ball screws can be customized for connection of cooling or lubrication through an axial hole in the shaft.

#### **Thread lengths**

Based on our technological capabilities and the precision class we recommend the following screw shaft lengths (see table below).

#### **Ball screw lubrication**

Ball screws are lubricated by oil or grease. The manner of lubrication and the lubricants are the same as those used for rolling bearings. The basic amount of the lubricant for a particular nut unit can be determined and recommended upon request.

#### **Oil lubrication**

In general, for the lubrication of the ball screws the same kind of oils as for the rolling bearings have been used, i.e. transmission mineral oils and bearing mineral oils with a minimum viscosity of **50 mm<sup>2</sup>/s** at **40 °C**. The amount of the oil used depends on the operating conditions.

#### **Grease lubrication**

**Grade 2** greases in accordance with **DIN 51825** are recommended for ball screws. The following types are delivered as a standard:

### KLÜBER Isoflex NBU 15 OPTIMOL OPTITEMP TT1

For high load applications plastic lubricants can be used. After setting up of the machine tool the lubricant has to be replenished after 2 to 3 months. In a standard operation period the grease should be replenished once every 6 to 10 months. Greases with different properties should not be mixed during operation.

| Recommended<br>thread lengths |                    |      |      |      | nominal | diameter of | the screw sh | aft (mm) |      |      |      |      |
|-------------------------------|--------------------|------|------|------|---------|-------------|--------------|----------|------|------|------|------|
|                               | Precision<br>class | 12   | 16   | 20   | 25      | 32          | 40           | 50       | 63   | 80   | 100  | 125  |
|                               | IT1                | 200  | 230  | 250  | 350     | 700         | 1200         | 1500     | 2000 | 2500 | 2800 | 3000 |
| ground thread                 | IT3                | 250  | 280  | 300  | 400     | 1000        | 1800         | 2000     | 2500 | 3000 | 3500 | 3500 |
| -                             | IT5                | 300  | 350  | 500  | 800     | 1500        | 2500         | 3500     | 4000 | 5000 | 5500 | 4000 |
|                               | IT5                | -    | -    | -    | -       | -           | 3000         | 4000     | 4500 | 5000 | 5500 | -    |
| whirled thread                | T5                 | -    | -    | -    | -       | -           | 4000         | 4500     | 5000 | 5500 | 5800 | -    |
|                               | T7                 | -    | -    | -    | -       | -           | 5000         | 5300     | 5500 | 5800 | 6000 | -    |
| unlined the sead              | T5                 | 3000 | 3000 | 4000 | 5000    | 6000        | 6000         | 6000     | 6000 | -    | -    | -    |
| rollea thread                 | T7                 | 3000 | 3000 | 4000 | 5000    | 6000        | 6000         | 6000     | 6000 | -    | -    | -    |

Dimensions other than those mentioned in the overview above (below) we gladly offer after mutual consultation.







### Product range of manufactured ball screws

- Recirculation shims (E external recirculation)
- Recirculation deflectors (I internal recirculation)
- Different types of recirculation by shims, segments or deflectors (E external recirculation by shims, I internal recirculation or S segment recirculation)
- Recirculation for high-speed ball screws (V caps, or S segments) Recirculation systems I and S comply with the DIN 69051 standard.







Ball screw nuts are the major components which transfer the axial load and provide smooth recirculation of the balls through the transition elements. The nut units provide elimination of axial play and guarantee the necessary rigidity of the transmission in both directions. They also distribute the lubricant and partially remove heat from the transmission unit. The inner working space of the nuts is protected at both ends against rough contamination by wipers, usually produced from PA6 (polyamide).

### **Types of nut units**

| type                      | designation | description                                                              | page.      |                    |
|---------------------------|-------------|--------------------------------------------------------------------------|------------|--------------------|
|                           | Α           | Single, non-preloaded nut without flange                                 | 20, 21     |                    |
|                           | АР          | Single, non-preloaded nut with flange                                    | 22, 23, 25 |                    |
|                           | A+A         | Double, preloaded nut without flange                                     | 20, 21     | A                  |
| Contraction of the second | AP+A        | Double, preloaded nut with flange                                        | 22, 23, 28 | R0,6 <sup>-8</sup> |
|                           | APR         | Single, preloaded nut with flange                                        | 22, 23     |                    |
| and Manual                | APVR        | Single, high-speed preloaded nut with flange for shafts with two starts  | 24         |                    |
|                           | APQR        | Single, high-speed preloaded nut with flange for shafts with four starts | 24         |                    |
|                           | APE         | Single, non-preloaded nut with flange for shafts with rolled thread      | 25         |                    |
|                           | B+B+K       | Double preloaded nut in a cube case                                      | 26, 27     | R0,6 -8            |
|                           | RMV         | Driven nut with inserted bearings                                        | 29         | A                  |
|                           | RMI         | Driven nut with integrated bearings                                      | 29         |                    |

### Applied methods of nut unit preload



preload by inserted spacer ring



preload by increased difference in thread pitch

### **APVR, APQR** nut APVR, APQR $P/2 + \Delta F$ $P/2 + \Lambda P$ P/2-∆P preload by difference between



**APR** 



### Parameters of geometric accuracy of the ball screw travel





- thread length
- nominal travel
- useful travel
- excess travel
- travel compensation (difference between specified and nominal travel)
- tolerance on specified travel (deviation of the actual mean travel)
- deviation of the actual mean travel from the nominal travel
- deviation of the actual mean travel from the specified travel
- deviation of travel within the limit of 300 mm of the useful travel
- deviation of travel within the limits of one turn deviation of travel within the useful travel

tolerance field of the defined mean travel tolerance field of the useful travel deviations tolerance field of travel deviations within one revolution

tolerance field of travel deviations within the limits of 300 mm of the useful travel

L\_ (mm):

up to pitch P<20 L = 4P, for **P>20 L** = **3P**, for **P>40 L** = **2.5P** 

### Behaviour of forces and deformations in a preloaded nut unit



- elastic deformation of the nut unit deformation resulting from the preload force Fv deformation resulting from external load on the nut 1 or 2 preload force external load on nut 1 or 2
- internal forces acting in nut 1 or 2 **F**<sub>a(1), (2)</sub>





### **Manufacturing technologies**

**Rolling of the ball screw thread** is a technology of forming the screw (by pressure) on a steel shaft, using rotating dies with the desired thread profile. The result is a semi-product for further processing such as case hardening and polishing of the ball screw thread. The thread pitch provided by rolling differs from the required nominal pitch by a deviation which has been corrected by the subsequent heat treatment. This method is suitable for mass production. The resulting accuracy is significantly influenced by the quality of the material and the conditions of the controlled rolling process. Afterwards it is necessary to select and sort



the rolled shafts based on the achieved accuracy. As a standard, rolled ball screws are made in accuracy class **T7** (**DIN 69051, ISO 3408**) and lower. Ball screws in **T5** can also be selected. Rolled ball screws are characterized by the specific shape of the non-functional part of the thread profile resulting from the forming process. Due to the technology used, those ball screws have significant inner tension and stresses of the material, usually demonstrated by geometrical inaccuracy, associated with deformations of the shaft axis and slightly increased noise during rolling of the balls within the thread profile.

**Rotational milling (whirling) of the ball screw thread** is a metal cut ting technology using tools with the desired thread profile, which provides machining of the thread already on the hardened surface of the shaft in order to get the final precise lead accuracy and profile of the screw. This technology is suitable for serial and piece production of ball screws. The resulting accuracy is influenced by the accuracy of the machine as well as by the quality of the used cutting tools and their precise



adjustment. As a standard, this method is used to produce ball screws in **IT5** (**T5** and **T7**) precision classes. Whirling can also be used for the production of hardened ball nuts without the necessity of subsequent grinding. Final assembly and "matching" of the nut and the screw shaft is then performed by the selection of balls (oversized balls). With regard to the depth of the hardened layer and the shallow thread profile, the whirled ball screws are suitable rather for smaller sizes of balls.

**Grinding of the ball screw threads** is the traditional technology of ball screw manufacturing, using already machined and hardened shafts, achieving the most precise and accurate thread profile and lead of the screw. The method is suitable for serial and piece production. The resulting accuracy is influenced by the accuracy of the grinding machines and the quality of the used grinding wheels and their continuous profile shaping. This method is usually used to produce ball screws in the **IT1** and **IT3** precision classes. The hardened layer has optimal layout and distribution, copying the thread profile of the ball screw, which is characterised by high geometric accuracy and long operating life. However, RO, 6 this is the most demanding and time-consuming production method.



rolled profile





# 2.2. Standard positioning ball screws (ST)

This type of ball screws is most widely spread in practice thanks to their universal use, excellent technical parameters and wide product range. They have been produced mainly by the technologies of grinding, whirling or a combination of both.

# For this type of ball screws the following nut types are available:

- Single and double nuts
- With backlash or preloaded
- With internal or external ball recirculation system
- With or without flange

### **Characteristics:**

- Precise positioning ball screws
- Wide range of sizes and pitches
- Standard geometric and working accuracy, service life and load capacities according to ISO 3408 and DIN 69051
- Delivered with customized preload

### **Technical parameters:**

- Diameters from 12 to 125 mm
- Pitch from 3 to 50 mm, lengths up to 6,2 m
- Accuracy classes from **IT1** to **IT5**
- D<sub>o</sub> × n = 100,000 efficiency 94–97% (according to the thread pitch and lubricant)
- Shaft material minimum strength R<sub>m</sub> = 650 MPa, functional surfaces of the shaft and nut hardened to 58-60HRC
- Application temperatures -40 to +80°C (according to lubricant type)

### Applications:

- Machine tools
- Positioning mechanisms
- Automotive and aerospace industries

**Example of designation:** K80×20 - 4+4/AP+A ST/3 (ball screw with diameter 80 mm, 20 mm right hand pitch, 4 working threads, double preloaded nut type AP+A, with flange type 3)

Technical data are specified in Chapter No. 3 – Technical parameter tables (pages 20, 21, 22, 23, 26).

### Universal application, wide product range





# 2.3. High-load ball screws (HL)

Compared to standard ball screws, high-load (HL) ball screws are characterized by more than twice higher load capacity and rigidity, achieved by changed radius of the thread profile. In the case of long ball screw shafts, this profile can be ground just in the nut. Short ones (up to three times the length of the nut) always have this profile also on the shaft. High load ball screws have lower efficiency and are designed for slow-running applications.

The HL ball screws are usually produced as non-preloaded (single nuts with backlash). In all applications, it is necessary to perform shaft buckling analysis and the nuts must be checked for their flange width in relation to axial load.

### **Characteristics:**

- Precise ball screws for high axial load and long life
- Thread accuracy of the ball screws complies with the ITT precision class (DIN 69051) with inter-thread deviation less than 2 µm
- Shaft ends are ground in the tolerance classes 4 to 6

### **Technical parameters:**

- Recommended shaft/diameters are 63, 80, 100 and 125 mm
- Recommended pitch 20 mm
- Used material with minimum strength R<sub>m</sub>=720MPa
- Ball screws, surface-induction hardened to 58-60HRC
- Ball nuts are designed for high loads

### **High load transition**

<u>/</u>0,004 A -

### Conditions for use of HL ball screws:

- Transmission efficiency approximately 0.93 0.95%
- Shaft buckling analysis is necessary
- Lubricants for high loads must be used. Recommended lubricants are:

Klüber Microlube GL 261, OKS 400, Optimol Longtime PD 2, Lubcon Turmogrease PHS 1002 (all other greases suitable for high loads).

Working temperature up to 90°C

### Applications:

- 📕 Injection moulding machines
- Transportation mechanisms
- Lifting equipment
- Replacement for hydraulic cylinders

**Example of designation:** K80×20 - 4/AP HL/3 (ball screw with diameter 80 mm and pitch 20 mm, 4 working threads, single nut with flange, high-load design, flange type 3)

Technical parameters are specified in Chapter No. 3 – Technical parameter tables (page 25).





### 2.4. High-speed ball screws (HS)

New technologies bring essential changes in the requirements for machine tools especially concerning rotational speed of the working spindle (up to **50,000 rpm**), spindle output (**15÷60 kW**), linear working speed (**10÷30 m.min**<sup>-1</sup>) and linear high-speed (**40÷80 m.min**<sup>-1</sup>). In order to achieve the above mentioned parameters engineers are forced to use linear motors or high-speed ball screws.

The linear motors have high cost and their high electromagnetic field often causes complications for the machine tool builders. This is why the cheaper and technically sufficient high-speed ball screws are more widely spread. In them the thread pitch **P** equals their diameter **D**<sub>o</sub> and they can be run at high rotational speeds **n** (**D**<sub>o</sub> multiplied by **n** can be up to **125,000**).

# For this type of ball screws the following nut types are available:

- Single preloaded nuts by difference between thread leads
- Nuts with patented external ball recirculation system
- Usually nuts with flange

### **Characteristics:**

- Precise ground positioning screws
- High pitches up to the size equal to their nominal diameter, two-start and four-start screws
- Standard geometric and working accuracy, service life and load capacities according to ISO3408 and DIN69051
- Delivered with customized preload

#### **Technical parameters:**

- Diameters from 16 to 50 mm
- Pitches from 15 to 50 mm, thread lengths to 2 m
- Thread lengths over 2 m can be supplied in single-start design with segments (see table on page 28)
- Accuracy class IT1 and IT3
- D,×n = 125,000, efficiency 94–97% (according to thread pitch and lubricant)
- Minimum strength of the shaft material R<sub>m</sub> = 650MPa, functional surfaces of the shaft and nut hardened to 58-60HRC
- Working temperature -40 to +80°C (according to lubricant type)
- Lubricants with high viscosity are recommended

### **Applications:**

- Machine tools
- Positioning mechanisms

**Example of designation:** K40×40 – 1.5+1.5/APVR HS/3 (ball screw with diameter 40 mm, with right hand two-start pitch 40 mm, with 1.5 working threads, preloaded nut type APVR with flange type 3)

Technical parameters are specified in Chapter No. 3 – Technical parameter tables (pages 24, 28).

### **High speed transition**



## 2. PRODUCT RANGE



# 2.5. Ball screws for low speed and precise positioning (PP)

These ball screws are used in applications in which high accuracy and low speed of positioning are required. They are suitable especially for precise machine tools.

The shaft thread is generally ground. These ball screws are only available with double preloaded nuts AP+A, or A+A. The ball screws are offered in IT1 precision class and for their maximum thread length the following formula should be kept:  $L_z = 20 \times D_o$ . The load capacities of these ball screws are reduced to 70% of the load capacity of standard ball screws due to the reduction of the number of balls in the nuts.

0

The main advantages of these ball screws are their high accuracy and smooth run. Furthermore their high flexibility allows the production of ball screws exactly according to the customer's needs.

# For this type of ball screws the following nut types are available:

Double preloaded nuts

### **Characteristics:**

- Precise ground positioning screws with IT1 precision class
- Standard geometric and working accuracy according to I\$O3408 and DIN 69051
- Reduced tolerance of T<sub>p</sub> values (usually by 10 to 15% compared to the standard)
- Delivered with customized preload

### Precise positioning and smooth run

### Technical parameters:

- Diameters from 20 to 80 mm
- Recommended pitches 5 and 10 mm, thread lengths to 20×D
- Precision class IT1
- D<sub>o</sub>×n = 80,000, efficiency 94–97% (according to thread pitch and lubricant)
- Minimum strength of the shaft material R<sub>m</sub>=650MPa, functional surfaces of the shaft and nut hardened to 58-60HRC
- Working temperature -20 to +60°C (according to lubricant type)
- Lubricants with increased resistance to unstable high pressure are recommended

### Applications:

Precise machine tools - grinding machines, EDM and laser machines

10.008 A

These ball screws do not have a separate technical parameter table and are delivered as customized solutions with respect to the limitations mentioned above. We recommend performance with an internal or external recirculating system, for example a segment type system; see the table on page 28.

**Example of designation:** K40x5 - 4+4/AP+A PP/2 (ball screw with diameter 40 mm, with pitch 5 mm, 4 working threads, preloaded double nut AP+A, precise positioning design, flange type 2)





# 2.6. High-efficiency ball screws (HE)

These ball screws are designed for applications requiring high efficiency of the transmission. They are used especially in machine tools and other equipment which meet the requirements for low energy consumption, as well as where high efficiency is required in order to eliminate heat sources or when an optimal ball screw drive is needed.

The high efficiency is achieved by an accurate thread profile ground section, by precise geometry of the groove and alternatively by the use of ceramic balls in the recirculation system.

These ball screws are produced in the precision classes IT1 to IT5.

# For this type of ball screws the following nut types are available:

All types of nuts, non-preloaded nuts with backlash up to 0.05 mm

### **Characteristics:**

- Application of ceramic balls, special gothic thread profile
- Precise positioning ground ball screws
- Standard geometric and working accuracy according to ISO3408 and DIN 69051
- Reduced T values (usually by 15 to 20% against the standard)

#### **Technical parameters:**

- Diameters from 12 to 63 mm
- Recommended pitch up to **10 mm**
- Precision classes from IT1 to IT5
- D<sub>o</sub>×n = 80.000, efficiency 96–98% (according to thread pitch and lubricant)
- Minimum strength of the shaft material R<sub>m</sub> = 650MPa, functional surfaces of the shaft and nut hardened to 58–60HRC
- Working temperature -20 to +60°C
- A lubricant with reduced noise is recommended for a smooth run

### **Applications:**

- Energy saving machine tools
- Laboratory and measuring equipment
- Aerospace industry

These ball screws have no separate technical parameter table and they can be supplied with different nut units (A, AP, A+A, AP+A, APR). We recommend performance with an internal or external recirculating system, for example a segment type system; see the table on page 28.

**Example of designation:** K63x10 - 4/AP HE/2 (ball screw with diameter 63 mm and pitch 10 mm, 4 working threads, single non-preloaded nut with flange, high efficiency design, flange type 2)

### **High efficiency**



## 2. PRODUCT RANGE



### 2.7. Ball screws with a driven nut (with inserted bearings RMV or integrated bearings RMI)

The ball screw with a driven nut is a construction unit designed for direct mounting into the support of the machine and for connection to the drive through a gearwheel, or a wheel for cogged belts. In the **RMV** variant readymade bearings are inserted between the nut and the housing, whilst in the **RMI** variant the bearing tracks are produced directly on the outer surface of the nut and the balls recirculate between the nut and the housing. The nut is preset for driving gearwheel mounting. The preloaded bearings have been selected with respect to the load-carrying capacity of the nut. The precision class of the bearings also complies with the precision class of the ball screw.

#### 0

This compact unit is filled with a permanent grease filling and possible additional lubrication of the nut and the bearings is provided manually through a greasing hole, which can be adapted according to the requirements of the customer. This assembly is usually based on a double preloaded nut with segment recirculation system of the balls in a hole drilled lengthwise in the body of the nut above the thread. In the case of a double thread shaft the preload can be done by displacement of the run within each nut, resulting in an extremely compact unit for high speed and acceleration.

This solution provides machine tool builders with an opportunity to use an ecological and energy saving drive alternative in comparison with the standard shaft drive, which negatively influences the power consumption for its own rotation. It reflects the demands of the new European legislation being prepared in this regard.

### **Characteristics:**

- Compact construction unit for direct drive of the nut
- Possibility of nut preload 04 A
- Standard geometric and working accuracy according to ISO3408 and DIN 69051

#### **Technical parameters:**

- Diameters from 50 to 80 mm
- Recommended pitch from 20 to 32 mm
- Precision class from IT1 to IT5
- D<sub>o</sub>×n = 100,000, efficiency 95–97% (according to the thread pitch and lubricant)
- Minimum strength of the shaft material R<sub>m</sub> = 650MPa, functional surfaces of the shaft and nut hardened to 58-60HRC
- Working temperature -20 to +60°C

### Variants of performance:

Preloading by the difference between thread leads used in the two-start ball screws allows shortening of the nut

Use of a single non-preloaded nut also allows shortening of the nut

### Application:

- Machine tools
   Transporting mechanisms
- Substitution of racks
- Long actuation assemblies

**Example of designation:** RMV K50x25 - 4/ (driven nut with inserted bearings for ball screw with diameter 50 mm with pitch 25 mm and 4 working threads), or RMI K50×32 -4/ (driven nut with integrated bearings for ball screw with diameter of 50 mm with pitch 32 mm and 4 working threads).

Technical parameters are specified in Chapter No. 3 – Technical parameter tables (page 29).

**Energy saving** 

RMV



RMI



# 2.8. Transport ball screws (TS)

Transport ball screws are used in applications where high accuracy of positioning is not required, such as for example in transporting and lifting devices, wood processing machines, etc.

The screw shaft is produced by rolling or whirling and the shaft ends are machined according to the request of the customer. They are equipped as a standard with an **APE** type of nut, which is a single non-preloaded nut with flange. These ball screws are produced in the **T5** and **T7** precision classes. Their main advantage is a lower price.

### **Characteristics:**

- Productive and quick production of the screw shaft up to the length of 6,2 m
- Non-preloaded nut with backlash 0.015–0.05 mm (depending on the ball screw size)
- Standard geometric and working accuracy according to ISO3408 and DIN69051 for transport ball screws

### **Technical parameters:**

- Diameters from 12 to 63 mm rolled, from 32 to 100 mm whirled
- Recommended pitch up to 10 mm rolled and up to 30 mm whirled
- Precision class T5, T7
- D, xn = 80,000, efficiency 93–95% (according to thread pitch and lubricant)
- Minimum strength of the shaft material R = 650MPa, functional surfaces of the shaft and nut hardened to 58-60HRC
- Working temperature -20 to +60°C

### Application:

- Transporting mechanisms
- Wood processing machines
- Substitution of racks
- Long actuation assemblies

**Example of designation:** K63x10 - 4/APETS (ball screws with diameter 63 mm and pitch 10 mm, 4 working threads of the APE single nut with flange, transport design, the standard type 3 of the flange is not pointed out).

Technical parameters of the ball screws with rolled shaft are specified in Chapter No. 3 – Technical parameter tables (page 25). The product range of the whirled ball screws is shown in the table on page 5.

### **Favourable price**





# 2.9. Trapezoidal screws (Tr)

**Trapezoidal screws** (hereinafter also **Tr** screws) with metric trapezoidal thread (according to **ČSN 014050**) are standard structural components used as self-locking transition of the rotary motion to linear motion with low efficiency, given by the principle of their construction, by the lubrication and by the material of the friction thread surfaces. These lead screws bear only axial load and relevant torque whereas backlash between the screw and the nut should be decreased by special construction.

Trapezoidal screws are supplied as a complex assembly with matched nut or nuts according to the request of the customer. Their material, application, lubrication and adjustment of backlash, which occurs during the operation, are determined by the custom practice of the particular customers and it is not solved by the man B ufacturer, which provides only consulting and advisory services.

We offer a wide range of trapezoidal screws with metric thread:

- Diameters from 16 mm to 120 mm
- Thread pitch from 4 mm to 14 mm
- Maximum thread length **12 m** (according to diameter and precision class)

The range is enlarged by the offer of non-standard connecting dimensions of nuts. Both nuts and screws can be manufactured according to the requirements of the customer. The profile of the thread is produced in compliance with the standards **ISO 2901-77**, **ISO 2902-77**, **ISO 2903-77** and **ISO 2904-77** or with the corresponding **ČSN 01 4050**.

Shafts are usually made from steel grade **14260** and **CF53**. The standard performance of the shaft is without heat treatment.

The nuts can be made from cast iron with grade **422425**, from tin bronze **Cu – Sn12**, or from plated steel (steel shell, plated with bronze **Cu – Sn12**). Technical consultation and delivery of the plated steel material is needed in the case of plated nut design.

### Self-locking

### **Precision classes:**

Thread shafts and nuts are manufactured in three precision classes:

- 1 fine ground profile of the shaft thread (used in thread grinding machines, CNC boring machines and other machines with higher accuracy),
- 2 intermediate (used in cutting machines, lathes, milling machines, horizontal boring machines),
- **3 rough** (used in machine tools without any special requests regarding accuracy).

### The precision of the thread is determined by:

- the system of thread tolerances,
- deviation of thread pitch,
- accuracy of shape and position of the thread,
- thread surface roughness.

### **Basic characteristics of Tr screws:**

- Maximum peripheral speed in the thread is v = 80m/min for nuts from **CuSn8**, **CuSn12**. It is specified as the ratio between the speed factor (usually  $p_v = 400$ ) and the allowed specific pressure in the thread (usually  $p_{allowed} = 5N/mm^2$ ).
- Maximum rpm n of the **Tr** screw with nominal diameter **d** are:

$$n = \frac{(v \times 1000)}{(d \times \pi)} \text{ ot./min}$$

Maximum travel speed s for the pitch P in mm is:

$$s = \frac{(n \times P)}{1000} m/min$$

The pressure **p** in the **Tr** thread can be calculated as follows:

$$p = \frac{F}{(0,75 \times \pi \, d_s \times (d-d_s) \times H/P)}$$
 N/m

where **F** is axial force in [**N**], **d**<sub>s</sub> is the mean diameter of the thread, **d** is the nominal diameter of the thread, **H** is the thread length in the nut and **P** is thread pitch, all values in [**mm**]. The allowed pressure is as stated above ( $\mathbf{p}_{allowed} = \mathbf{5N/mm^2}$ ).

Technical parameters are specified in Chapter No. 3 – Technical parameter tables (page 30).





# 2.10. Other products

### **Linear actuators**

The linear actuator provides drive controlled linear motion within the range of the working stroke, thus replacing hydraulic cylinders. It converts the rotary motion into linear actuation by the use of a ball screw with minimum transition efficiency **95%**, stroke range **150–600 mm** upon axial load from **12.5** to **25kN**.



The actuation speed can be regulated or set by a suitable selection of the pitch of the used ball screw in relation to the used electric motor.

### **Guide rods**

Guide rods are structural components suitable for accurate and highly efficient linear guidance of the moving parts of various mechanisms. They are produced from hardened, ground and straightened circular cross section shafts and can be mounted in clamping bars, sockets and other clamping elements. The guide rods are supplied with a relevant rolling guide according to the required operation load and type of the guide rod. Guide rods that have been properly designed, calculated and applied do not require any special supervision or maintenance. However, they should be protected against dust, water and aggressive environments. In combination with ball screws and suitable drives they constitute basic construction motion units used in various machines and equipment. Guide rods are usually produced from steel grades CF53 or 42CrMo4 and afterwards are induction heat treated to 58 - 60HRC.

### Assembly

Before the start of operation the conservation oil layer should be removed and the guide rods should be cleaned properly. The guide rods are usually implemented with linear bushings. They should be accurately aligned in parallel with the direction of motion of the linear bearings with precision **0.02 mm/1,000 mm**. In the event of any warranty repair the guide rods should be sent to the producer as a complete rolling guide assembly.

### Lubrication

For the lubrication of the guide rods, suitable lubricants include those used for ball bearings as well as relevant plastic lubricants which are applied once on basis of the recommendation of manufacturers of rolling guides.

Technical parameters are specified in Chapter No. 3 – Technical parameter tables (page 31).

### **Telescopic ball screws**

It is a complex assembly of several ball screws screwed in one. Each nut has the additional function of a bearing for the fixation of the next shaft from the assembly of ball screws. The unique construction with mutual bonds of the individual components secures simultaneous turning and actuation of all ball screws at once. In such a way multiplication of the stroke per one revolution of the drive is achieved. The telescopic ball screw replaces hydraulic cylinders, with the advantage of easy control and positioning.

The telescopic ball screw takes advantage of the basic properties of the ball screws, in which the highly efficient rolling of balls in the thread profiles of the screw and the nut is used for the transition of the rotary motion into linear.

Telescopic ball screws are appreciated for their compact length in comparison with the achieved total actuation. This property can be used at places where it is necessary to solve actuation without the possibility to apply through and long lifting mechanisms, such as for example in the case of various handling platforms. The telescopic ball screw can be used in machine tools with unconventional kinematic structure (hexapods).

### Threadless ball screws

The threadless ball screw is designed mainly for handling mechanisms of manipulators and transporting devices, which require effective transition of the rotary motion to linear without the preference of high rigidity and load capacity, but with the requirement for simplicity, easy maintenance and easy production.



Screw thread is produced only in the nut and the transition of the load is provided only through the balls in the nut and the smooth cylindrical surface of the shaft. The principle is based on the elastic deformation of the surface of the hardened and ground shaft caused during the rolling of the preloaded balls guided in the inner screw thread of the nut. In this application it is possible to use the slippage of the nut on the shaft after exceeding certain axial force as a safety element. The nut continues in its motion in the original direction after the decrease of the load, or the current increase causes drive disconnection.





# 3.1. Description and meaning of used symbols

# The individual types of the ball screw nut design are specified in the Technical parameter tables by the following parameters

| parameter      | description                                                                                                                                                                                                                                                          |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ď              | <b>nominal diameter</b><br>the diameter of the cylinder containing the centres of the balls which are in contact with the screw shaft and the ball nut body at the theoretical contact<br>points                                                                     |
| Р              | pitch<br>the axial distance between threads                                                                                                                                                                                                                          |
| i              | number of working threads (loaded turns)<br>number of threads in the nut under load                                                                                                                                                                                  |
| D <sub>w</sub> | ball diameter<br>diameter of balls in the nut unit                                                                                                                                                                                                                   |
| L, D, t,       | dimension values<br>nominal length and diameter dimensions for nut units                                                                                                                                                                                             |
| ۲              | <b>basic static load rating</b><br>the static centric axial load that corresponds to a total permanent deformation of the ball and ball track at the most heavily stressed point of contact<br>between the ball and the ball track of 0.0001 times the ball diameter |
| C <sub>a</sub> | <b>basic dynamic axial load rating</b><br>the constant centric axial load that a ball screw can theoretically endure for a basic rating life of one million revolutions                                                                                              |
| k              | rigidity factor<br>the rigidity level of the ball transmission between the shaft and the nut which is determined by the geometric shape of the thread groove and the material<br>parameters                                                                          |
| R              | <b>axial rigidity</b><br>the rate of elastic deformation of the nut against the shaft at given load                                                                                                                                                                  |
| E              | <b>external type of recirculation</b><br>external recirculation of the balls by the means of shims via several working threads                                                                                                                                       |
| I              | internal type of recirculation<br>internal recirculation of the balls by means of deflectors, which are separate for each working thread in the nut. Dimensions of nuts with this type of<br>recirculation comply with DIN 69051.                                    |
| S              | segment type of recirculation<br>internal recirculation of the balls by means of segments which lead and return the balls through an axial hole in the nut. Dimensions of nuts with this type of<br>recirculation comply with DIN 69051.                             |

# 3.2. Designation of ball screws

### xyz K 50×10L - 4+4 /AP+A PP/2 IT1





# 3.3. Nut types A, A+A



| ·         ·         mm         mm <th>type</th> <th></th> <th></th> <th>a</th> <th>-0</th> <th>arbor</th> <th>(A+A)</th> <th>-p</th> <th>-m</th> <th>u<sub>2</sub></th> <th><b>*</b>1</th> <th></th> <th><b>5</b>4</th> <th>(A)</th> <th><b>1</b></th> <th></th> <th>-</th> <th>ĸu<sub>o</sub>xr</th> | type |              |                     | a                | -0               | arbor | (A+A)      | -p         | -m   | u <sub>2</sub> | <b>*</b> 1 |    | <b>5</b> 4 | (A)        | <b>1</b> |       | -      | ĸu <sub>o</sub> xr |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|---------------------|------------------|------------------|-------|------------|------------|------|----------------|------------|----|------------|------------|----------|-------|--------|--------------------|
| K 12×3         2         2         2         18         10         5         1,3         2         4,5         6         36         9.7         440         2840         61         215           K 12×4         2         2,500         24         23         12         5         1,3         2         5         7         47         9.2         6630         3910         33         220           K 12×5         2         2,500         24         25         1,2         5         1,3         2         5,5         7,5         50         9.2         6610         3000         35         220           K 16×3         3         2,000         27         21         12         5         1,3         3         5         7,5         63         13,2         1400         6880         110         420         440         480         480         140         6880         110         420         440         480         1400         6880         110         420         716         55         13         13         2         4,5         6,5         42         131         13100         5600         141         420         716 <t< th=""><th>-</th><th>N/µm</th><th>N/µm<sup>3/2</sup></th><th>N</th><th>N</th><th>mm</th><th>mm</th><th>mm</th><th>mm</th><th>mm</th><th>mm</th><th>mm</th><th>mm</th><th>mm</th><th>mm</th><th>mm</th><th>-</th><th>-</th></t<>                                   | -    | N/µm         | N/µm <sup>3/2</sup> | N                | N                | mm    | mm         | mm         | mm   | mm             | mm         | mm | mm         | mm         | mm       | mm    | -      | -                  |
| K12x4       2       2,500       24       23       12       5       1,3       2       5       7,5       5       9,2       6630       390       53       220         K12x5       2       2,500       24       25       12       5       1,3       2       5,5       7,5       50       9,2       6610       3900       53       220         K16x3       3       2,000       27       21       12       5       1,3       2       4,5       6,5       42       13,7       108/0       4980       120       4980       120       4980       120       4980       120       4980       120       4980       120       4980       120       4980       120       4980       120       4980       120       4980       120       4980       120       4980       120       4980       120       4980       120       414       1880       610       442       44       4100       6880       100       442       44       450       4880       110       4480       1380       510       53       53       132       141       500       510       53       510       55       51       55<                                                                                                                                                                                                                                                                                                                                        | E    | 215<br>282   | 61<br>92            | 2 840<br>4 020   | 4 940<br>7 410   | 9,7   | 36<br>42   | 6<br>6.5   | 4,5  | 2              | 1,3        | 5  | 10<br>12   | 18<br>21   | 22       | 2,000 | 2      | K 12×3             |
| K12x5       2       2,500       2       2,500       7,5       500       9,26       610       3900       53       220         K16x3       3       2,000       27       21       12       5       1,3       2       5,5       7,5       50       9,26       610       3900       53       220         K16x3       4       2,000       27       21       12       5       1,3       2       4,5       6,5       442       13,7       10840       4980       120       424         K16x4       4       2,000       29       27       16       5       1,3       3       5,5       8       67       12,5       10900       6150       63       284         K16x5       2       3,175       32       27       16       5       1,3       3       5,5       8       67       12,5       10900       6150       63       284         K20x3       4       2,000       36       27       16       5       1,3       3       5,5       8       67       12,5       10900       6150       63       244       652       14       652       14       652       1                                                                                                                                                                                                                                                                                                                                                                         | E    | 220          | 53                  | 3 910            | 6 6 3 0          | 9,2   | 47         | 7          | 5    | 2              | 1,3        | 5  | 12         | 23         | 24       | 2,500 | 2      | K 12×4             |
| R 12-3       2       2,000       27       21       12       5       1,3       2       4,5       6,5       42       1,7       1,400       4980       126       424         K 16×3       4       2,500       27       21       12       5       1,3       2       4,5       6,5       42       137       14500       6400       188       555         K 16×4       4       2,500       29       21       16       5       1,3       3       5       7,5       63       13.2       14 100       6480       100       432       14       13800       6800       117       548         K 16×5       2       3,175       32       27       16       5       1,3       3       5,5       8       67       12,5       1600       8800       147       548         K 20×3       4       2,000       36       21       12       5       1,3       3       5,5       8       67       12,5       1600       8800       101       412       104       4100       4100       4100       4100       4100       4100       4100       4100       4100       4100       4100       4                                                                                                                                                                                                                                                                                                                                                        | F    | 220          | 79<br>53            | 3 000            | 9 950            | 0.2   | 50         | 7,5        | 55   | 2              | 1 2        | 5  | 12         | 27         | 24       | 2 500 | 3      | K 12~5             |
| K 16x3 $\frac{4}{4}$ 2,000       27 $\frac{21}{24}$ 12       5       1,3       2       4,5       6,5       48       13,7       14500       6400       168       545         K 16x4 $\frac{3}{4}$ 2,500       29       31       16       5       1,3       3       5       7,5       65       13,2       14 500       6800       147       548         K 16x5 $\frac{2}{3}$ 3,175       32       27       16       5       1,3       3       5,5       8       67       12,5       10 90       6150       63       284         K 16x5 $\frac{2}{3}$ 3,175       32       27       16       5       1,3       2       4,5       6,5       42       18,1       1810       500       160       141       522         K 20x3 $\frac{3}{4}$ 2,000       36       27       16       5       1,3       3       5,5       8       7,4       17,2       24860       11920       115       518         K 20x3 $\frac{3}{4}$ 2,000       40       21       12       5       1,3       3       5,5       8       7,4       17,7       <                                                                                                                                                                                                                                                                                                                                                                                                  | L.   | 474          | 126                 | 4 980            | 10.840           | 9,2   | 42         | د, ۱       | ر, ر | 2              | د,۱        | J  | 12         | 25         | 24       | 2,500 | 2      | R 12AJ             |
| K 16×4 $\frac{3}{4}$ 2.50029 $\frac{27}{31}$ 1651,3357,56313,218,1006880100422K 16×5 $\frac{2}{3}$ 3,17532 $\frac{27}{32}$ 1651,335,585712,510 990615063284K 20×3 $\frac{3}{4}$ 2,00036 $\frac{21}{24}$ 1251,324,56,54418,1138105500870095418K 20×3 $\frac{3}{4}$ 2,50036 $\frac{37}{21}$ 1651,3357,56317,643207165214674K 20×4 $\frac{3}{4}$ 2,50036 $\frac{35,1}{31}$ 2051,335,5873,417,22486011920115518K 25×3 $\frac{3}{4}$ 2,00040 $\frac{21}{21}$ 1251,324,56,54822,717,606270644K 25×3 $\frac{3}{4}$ 2,00040 $\frac{27}{21}$ 1251,324,56,54822,717,606270204619K 25×5 $\frac{3}{4}$ 2,50040 $\frac{35,1}{31}$ 1335,51085,612,213,1015,20013,20840K 25×5 $\frac{3}{4}$ 3,50040 $\frac{35,1}{31}$ 2051,335,5108,5,622,031,50018,60K 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E    | 545          | 168                 | 6 400            | 14 500           | 13,7  | 48         | 6,5        | 4,5  | 2              | 1,3        | 5  | 12         | 24         | 27       | 2,000 | 4      | K 16×3             |
| K 16×5 $\frac{2}{3}$ $3,175$ $32$ $27$ $16$ $5$ $1,3$ $3$ $5,5$ $8$ $57$ $12,5$ $10990$ $6150$ $63$ $284$ K 20×3 $\frac{3}{4}$ $2,000$ $36$ $21$ $12$ $5$ $1,3$ $2$ $4,5$ $6,5$ $42$ $18,10$ $1800$ $5600$ $161$ $497$ K 20×3 $\frac{3}{4}$ $2,000$ $36$ $21$ $12$ $5$ $1,3$ $2$ $4,5$ $6,5$ $42$ $18,10$ $1840$ $7165$ $214$ $674$ K 20×4 $\frac{3}{4}$ $2,500$ $36$ $\frac{27}{21}$ $16$ $5$ $1,3$ $3$ $5$ $75$ $65$ $17,6$ $18260$ $7910$ $141$ $592$ K 20×5 $\frac{3}{4}$ $3,500$ $36$ $\frac{35,1}{40,6}$ $20$ $5$ $1,3$ $3$ $5,5$ $8$ $73,4$ $17,2$ $24860$ $11920$ $115$ $518$ K 25×3 $\frac{3}{4}$ $2,000$ $40$ $21$ $12$ $5$ $1,3$ $2$ $4,5$ $6,5$ $42$ $22,7$ $1760$ $6270$ $204$ $619$ K 25×4 $\frac{3}{4}$ $2,500$ $40$ $27$ $116$ $5$ $1,3$ $3$ $5,5$ $8$ $73,4$ $22,2$ $3108$ $1380$ $259$ $844$ K 25×6 $\frac{3}{4}$ $3,500$ $40$ $\frac{27}{41}$ $18$ $5$ $1,3$ $3$ $6,5$ $65,5$ $77$ $20,7$ $4720$ $13900$ $79$ $424$ K 25×6 <td>Ε</td> <td>422<br/>548</td> <td>110<br/>147</td> <td>6 880<br/>8 800</td> <td>14 100<br/>18 800</td> <td>13,2</td> <td>55<br/>63</td> <td>7,5</td> <td>5</td> <td>3</td> <td>1,3</td> <td>5</td> <td>16</td> <td>27<br/>31</td> <td>29</td> <td>2,500</td> <td>3<br/>4</td> <td>K 16×4</td>                                                                                                                                                                               | Ε    | 422<br>548   | 110<br>147          | 6 880<br>8 800   | 14 100<br>18 800 | 13,2  | 55<br>63   | 7,5        | 5    | 3              | 1,3        | 5  | 16         | 27<br>31   | 29       | 2,500 | 3<br>4 | K 16×4             |
| K 20×3 $\frac{3}{4}$ 2,00036 $\frac{21}{24}$ 1251,324,56,5 $\frac{42}{48}$ 18,1138105600161497K 20×4 $\frac{3}{4}$ 2,50036 $\frac{27}{31}$ 1651,3357,56517,6182007165214674K 20×5 $\frac{3}{4}$ 3,50036 $\frac{35,1}{40,6}$ 2051,335,5873,417,22486011920115518K 25×3 $\frac{3}{4}$ 2,00040 $\frac{21}{21}$ 1251,324,56,5 $\frac{42}{42}$ 22,7177606270204619K 25×3 $\frac{3}{4}$ 2,50040 $\frac{21}{21}$ 1251,3357,56322,2236688034272825K 25×4 $\frac{3}{4}$ 2,50040 $\frac{31}{21}$ 1651,335,5873,422,03150180639K 25×5 $\frac{3}{3}$ 3,50040 $\frac{35}{31}$ 2051,335,5873,422,03150180646(R/L) $\frac{4}{4}$ 3,60044 $\frac{37}{43}$ 1851,336,5797920,7462901010182K 25×6 $\frac{3}{4}$ 3,60044 $\frac{35}{43}$ 1851,336,57819,627 2401390079424(R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ε    | 284<br>418   | 63<br>95            | 6 150<br>8 700   | 10 990<br>16 500 | 12,5  | 57<br>67   | 8          | 5,5  | 3              | 1,3        | 5  | 16         | 27<br>32   | 32       | 3,175 | 2<br>3 | K 16×5             |
| K       2       7       6       7       6       7       6       7       6       7       7       6       7       7       6       7       7       7       6       7       7       7       6       7       7       7       6       7       7       7       6       7       7       7       6       7       7       7       6       7       7       7       7       6       7       7       7       6       7       7       7       7       6       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ε    | 497<br>674   | 161                 | 5 600            | 13 810           | 18,1  | 42         | 6,5        | 4,5  | 2              | 1,3        | 5  | 12         | 21         | 36       | 2,000 | 3      | K 20×3             |
| k 20×4 $\frac{4}{4}$ 2,50036 $\frac{31}{31}$ 1651,3357,56317,62235101118626k 20×5 $\frac{3}{4}$ 3,50036 $\frac{35,1}{40,6}$ 2051,335,5873,417,22486011920115518k 25×3 $\frac{3}{4}$ 2,00040211251,324,56,54222,717,7606270204619k 25×3 $\frac{3}{4}$ 2,00040211251,335,5873,417,22486011920115518k 25×3 $\frac{3}{4}$ 2,00040271651,335,51085,612,223,2608,890180639k 25×5 $\frac{3}{4}$ 2,50040 $\frac{35,1}{40,6}$ 2051,335,51085,622,2315013600148646(R/L)43,50040 $\frac{35,1}{40,6}$ 2051,336,59,57920,7 $\frac{34720}{4220}$ 15690137644K 25×6 $\frac{3}{4}$ 3,96944 $\frac{37}{46}$ 1851,336,510,511822,03136013600148646K 25×6 $\frac{3}{4}$ 3,96944 $\frac{37}{46}$ 1851,336,510,511822,0314001700118 </td <td></td> <td>522</td> <td>141</td> <td>7 910</td> <td>18 260</td> <td></td> <td>55</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>24</td> <td></td> <td></td> <td>3</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 522          | 141                 | 7 910            | 18 260           |       | 55         |            |      |                |            |    |            | 24         |          |       | 3      |                    |
| K 20×5 $\frac{3}{4}$ 3,50036 $\frac{35,1}{40,6}$ 2051,335,5 $\frac{8}{10}$ $\frac{73,4}{85,6}$ 17,2 $\frac{24860}{33150}$ 11920115518K 25×3 $\frac{3}{4}$ 2,00040 $\frac{21}{24}$ 1251,324,56,54222,7177606,270204619K 25×4 $\frac{3}{4}$ 2,50040 $\frac{27}{31}$ 1651,3357,55522,2232608890180639K 25×4 $\frac{3}{4}$ 2,50040 $\frac{35,1}{40,6}$ 2051,335,58 $\frac{73,4}{10}$ 22,0 $\frac{31500}{31018}$ 180639K 25×5 $\frac{3}{4}$ 3,50040 $\frac{35,1}{40,6}$ 2051,335,58 $\frac{73,4}{10}$ 22,0 $\frac{31500}{31018}$ 180639K 25×6 $\frac{3}{4}$ 3,96944 $\frac{47}{33}$ 1851,336,59,57920,7 $\frac{47}{46290}$ 2100182888K 25×6 $\frac{3}{4}$ 3,96944 $\frac{47}{43}$ 1851,336,510,57819,6272401390079424K 25×1033,50040602051,336,52011820,031360148646K 25×1033,500402051,336,510,57819,627240 <th< td=""><td>E</td><td>696</td><td>188</td><td>10 130</td><td>24 350</td><td>17,6</td><td>63</td><td>7,5</td><td>5</td><td>3</td><td>1,3</td><td>5</td><td>16</td><td>31</td><td>36</td><td>2,500</td><td>4</td><td>K 20×4</td></th<>                                                                                                                                                                                                                                                                                                                                                                             | E    | 696          | 188                 | 10 130           | 24 350           | 17,6  | 63         | 7,5        | 5    | 3              | 1,3        | 5  | 16         | 31         | 36       | 2,500 | 4      | K 20×4             |
| k 20x543,5003640,62051,335,51085,61/,233 15015 260153695K 25x3 $\frac{3}{4}$ 2,00040211251,324,56,54222,717,606,270204619K 25x4 $\frac{3}{4}$ 2,50040 $\frac{21}{21}$ 1251,3357,56522,223,2608890180639K 25x4 $\frac{3}{4}$ 2,50040 $\frac{35,1}{40,6}$ 2051,335,5873,422,031,01811380239844K 25x533,96944371851,336,59,57920,7347201560137644K 25x6 $\frac{3}{4}$ 3,96944371851,336,56,57810,420017,500137644K 25x6 $\frac{3}{4}$ 3,96944371851,336,56,57810,420017,00182620K 25x1033,50040602051,336,56,57819,627,24013,90079424K 25x1033,50040602051,336,510,51185,629,253,90200502571082K 32x543,50050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 518          | 115                 | 11 920           | 24 860           | 17.2  | 73,4       | 8          |      | 2              | 1.2        | F  | 20         | 35,1       | 26       | 2 500 | 3      | K 20 5             |
| K 25×3 $\frac{3}{4}$ 2,00040 $\frac{21}{24}$ 1251,324,56,5 $\frac{42}{48}$ 22,717 7606 270204619K 25×4 $\frac{3}{4}$ 2,50040 $\frac{27}{27}$ 1651,3357,56522,223 2608 890180639K 25×5 $\frac{3}{4}$ 3,50040 $\frac{35,1}{40,6}$ 2051,335,587,3,422,031 55018 600148644K 25×6 $\frac{3}{4}$ 3,96944 $\frac{37}{44}$ 1851,336,59,57920,734 72015 690137644K 25×6 $\frac{3}{4}$ 3,96944 $\frac{37}{44}$ 1851,336,59,57920,734 72015 690137644K 25×6 $\frac{3}{4}$ 3,50040602051,336,56,57819,607.7010182858K 25×8 $\frac{2}{3}$ 5,00047382561,936,52011822,031 350146643K 25×1033,50040602051,336,52011822,031 36013500146643K 32×543,5005040,61861,945,51185,629,253 39020 502571082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I    | 695          | 153                 | 15 260           | 33 150           | 17,2  | 85,6       | 10         | 5,5  | 3              | 1,3        | 5  | 20         | 40,6       | 30       | 3,500 | 4      | K 20×5             |
| k25/542,00040241251,324,50,54822,723 6868034272825K25×4342,50040311651,3357,56322,223 2608890180639K25×533,5004035,12051,335,5873,422,031 5151380239844K25×633,96944371851,336,59,57920,734 72015 690137644K25×633,96944371851,336,59,57920,734 72015 690137644K25×825,00047382561,936,56,5789,627 24013 90079424K25×1033,50040602051,336,52011822,031 350146643K32×1033,5005040,61861,945,51185,629,255 39020 502571082K32×633,96952371882,536,5107927,663 56023 9002771082K32×633,96952371882,536,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F    | 619          | 204                 | 6 270            | 17 760           | 22.2  | 42         | 6.5        | 4.5  | 2              | 1 3        | 5  | 12         | 21         | 40       | 2 000 | 3      | K 25×3             |
| K 25×4 $\frac{3}{4}$ 2,50040 $\frac{27}{31}$ 1651,3357,5 $\frac{55}{63}$ 22,2 $\frac{23}{31018}$ 1380 $\frac{239}{239}$ 844K 25×533,50040 $\frac{35,1}{40,6}$ 2051,335,51085,622,031 55013 600148644K 25×6 $\frac{3}{4}$ 3,96944 $\frac{37}{437}$ 1851,336,5 $\frac{9,5}{12,5}$ 7920,7 $\frac{34720}{46290}$ 15 690137644K 25×6 $\frac{3}{4}$ 3,50040602051,336,5 $\frac{6,5}{10,5}$ 7819,627 24013 90079424K 25×6 $\frac{3}{3}$ 5,00047 $\frac{38}{46}$ 2561,936,5 $\frac{6,5}{10,5}$ 7819,627 24013 90079424K 25×1033,50040602051,336,52011822,031 36013 500146643K 32×543,5005040,61861,945,51185,629,253 90200 502571082K 32×6 $\frac{3}{4}$ 3,96952 $\frac{37}{43}$ 1882,536,5107927,647 67018 700179831K 32×6 $\frac{3}{4}$ 3,96952 $\frac{37}{43}$ 1882,5494 <t< td=""><td>L.</td><td>825</td><td>272</td><td>8 0 3 4</td><td>23 686</td><td>22,1</td><td>48</td><td>0,5</td><td>т, Ј</td><td>2</td><td>د,۱</td><td></td><td>12</td><td>24</td><td></td><td>2,000</td><td>4</td><td>K 2J AJ</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                | L.   | 825          | 272                 | 8 0 3 4          | 23 686           | 22,1  | 48         | 0,5        | т, Ј | 2              | د,۱        |    | 12         | 24         |          | 2,000 | 4      | K 2J AJ            |
| K 25×533,50040 $35,1$ 2051,335,58 $73,4$ 22,0 $3108$ 11380239844K 25×543,96944 $43$ 71851,335,58 $73,4$ 22,0 $31550$ 13600148646K 25×643,96944 $43$ 71851,336,59,57920,74472015690137644K 25×825,00047382561,936,56,57819,627 24013 90079424K 25×825,00047382561,936,56,57819,627 24013 90079424K 25×833,50040602051,336,52011822,031 36013 500146643K 25×1033,5005040,61861,945,51185,629,255 39020 502571082K 32×633,96952371882,536,5107927,647 67018 700179831K 32×633,96952371882,536,5107927,647 67018 700179831K 32×6345,0005646<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ε    | 639          | 180                 | 8 890            | 23 260           | 22.2  | 55         | 7.5        | 5    | 3              | 1.3        | 5  | 16         | 27         | 40       | 2,500 | 3      | K 25×4             |
| k 25×533,50040 $35,1$ 2051,335,5873,422,0315501500148646(R/L)43,96944371851,336,59,57920,74207017500197855K 25×633,96944431851,336,59,57920,74629020100182858K 25×825,00047462561,936,56,57819,627 24013 90079424K 25×835,00040602051,336,52011822,031 36013 500146643K 25×1033,50040602051,336,52011822,031 36013 500146643K 32×543,5005040,61861,945,51185,629,253 9020 50257108265165161,945,5107927,647 67018 700179831K 32×633,96952371882,536,5107927,647 67018 700179831K 32×635,00056542582,5491 </td <td></td> <td>844</td> <td>239</td> <td>11 380</td> <td>31 018</td> <td>,</td> <td>63</td> <td>.,-</td> <td></td> <td></td> <td>-7-</td> <td></td> <td></td> <td>31</td> <td></td> <td>_,</td> <td>4</td> <td>Karve</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 844          | 239                 | 11 380           | 31 018           | ,     | 63         | .,-        |      |                | -7-        |    |            | 31         |          | _,    | 4      | Karve              |
| K1/14140,61101083,642,0017,300197533K 25×633,96944371851,336,59,57920,73472015 690137644K 25×825,00047382561,936,56,57819,627 24013 90079424K 25×1033,50040602051,336,52011822,031 36013500146643K 32×543,5005040,61861,945,51185,629,255 39020 5052571082K 32×633,96952371882,536,5107927,647 67018 700179831K 32×633,96952371882,536,5107927,647 67018 700179831K 32×634,63505061,74082,549426,557 70024 420156827K 32×1036,3505061,74082,5471112926,265 96030 330134804K 32×1236,3505067,74082,5471112926,557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1    | 646<br>955   | 148                 | 13 600           | 31 550           | 22,0  | /3,4       | 8<br>10    | 5,5  | 3              | 1,3        | 5  | 20         | 35,1       | 40       | 3,500 | 3      | K 25×5             |
| K25×643,96944431851,336,51,2,59120,791/2010,00137814K 25×825,00047382561,936,56,57819,627,24013,0079424K 25×1033,50040602051,336,52011822,031,36013,500146643K 25×1033,50040602051,336,52011822,031,36013,500146643K 32×543,5005040,61861,945,51185,629,255,39020,0502571082K 32×633,96952371882,536,5107927,647,67018,700179831K 32×634,96952371882,536,5107927,647,67018,700179831K 32×835,00056462582,5471112926,557,70024,420156827K 32×1036,3505061,74082,5471112926,557,0033,030134804K 32×1236,3505061,74082,5 <t< td=""><td></td><td>644</td><td>197</td><td>17 500</td><td>42 070</td><td></td><td>05,0<br/>79</td><td>95</td><td></td><td></td><td></td><td></td><td></td><td>40,0</td><td></td><td></td><td>4</td><td>(N/L)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 644          | 197                 | 17 500           | 42 070           |       | 05,0<br>79 | 95         |      |                |            |    |            | 40,0       |          |       | 4      | (N/L)              |
| K 25x8 $\frac{2}{3}$ 5,000       47 $\frac{38}{46}$ 25       6 $1,9$ 3 $6,5$ $10,5$ 94 $19,6$ $27240$ $13900$ $79$ $424$ K 25x10       3       3,500       40       60       20       5 $1,3$ 3 $6,5$ $10,5$ 94 $19,6$ $427240$ $13900$ $79$ $424$ K 25x10       3       3,500       40       60       20       5 $1,3$ 3 $6,5$ $20$ $118$ $22,0$ $31360$ $13500$ $1166$ $643$ K 32x5       4 $3,500$ 50 $40,6$ $18$ 6 $1,9$ $4$ $5,5$ $11$ $85,6$ $29,2$ $55390$ $20050$ $257$ $1082$ K 32x6 $3$ $3,969$ $52$ $37$ $18$ $8$ $2,5$ $3$ $6,5$ $10$ $79$ $27,6$ $47670$ $18700$ $179$ $831$ K 32x86 $3$ $5,000$ $56$ $46$ $25$ $8$ $2,5$ $4$ <td>Ε</td> <td>858</td> <td>187</td> <td>20 100</td> <td>46 290</td> <td>20,7</td> <td>91</td> <td>12 5</td> <td>6,5</td> <td>3</td> <td>1,3</td> <td>5</td> <td>18</td> <td>43</td> <td>44</td> <td>3,969</td> <td>4</td> <td>K 25×6</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ε    | 858          | 187                 | 20 100           | 46 290           | 20,7  | 91         | 12 5       | 6,5  | 3              | 1,3        | 5  | 18         | 43         | 44       | 3,969 | 4      | K 25×6             |
| K 25x835,0004/4/462561,936,510,59419,640.86019700118620K 25×1033,50040602051,336,52011822,031.36013.500146643333,5005040,61861,945,51185,629,255.39020.05025.7108265151515873,441.54015.65019382265151510792,553.9020.05025.7108265151515107927,647.67018.70017.9831882,536,5107927,647.67018.70017.9831882,536,5107927,647.67018.70017.9831882,549426,557.70024.42015.682.7835,00056462582,549426,557.70024.42015.682.7832×1036,3505061,772,54082,5471112926,265.96030.33013.4804822×1236,35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _    | 474          | 79                  | 13 900           | 27 240           |       | 78         | 6.5        |      |                |            |    |            | 38         |          |       | 2      |                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ł    | 620          | 118                 | 19 700           | 40 860           | 19,6  | 94         | 10,5       | 6,5  | 3              | 1,9        | 6  | 25         | 46         | 4/       | 5,000 | 3      | K 25x8             |
| K 32×5 $\begin{array}{c}3\\4\\6\end{array}$ $\begin{array}{c}35,1\\5\\5\end{array}$ $\begin{array}{c}18\\6\end{array}$ $\begin{array}{c}6\\1,9\end{array}$ $\begin{array}{c}5\\4\end{array}$ $\begin{array}{c}5\\5,5\end{array}$ $\begin{array}{c}8\\7,4\\1\end{array}$ $\begin{array}{c}41540\\29,2\end{array}$ $\begin{array}{c}15650\\5390\\25390\\2050\\257\end{array}$ $\begin{array}{c}193\\822\\1082\\1082\\1590\end{array}$ K 32×6 $\begin{array}{c}3\\4\end{array}$ $\begin{array}{c}3,969\\4\end{array}$ $\begin{array}{c}50\\51\end{array}$ $\begin{array}{c}8\\6\end{array}$ $\begin{array}{c}7,6\\7,5\\7,5\end{array}$ $\begin{array}{c}7,6\\10\\7,2,5\end{array}$ $\begin{array}{c}7,7\\7,6\\7,6\\7,6\\7,6\\7,6\\7,6\\7,6\\7,6\\7,6\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I    | 643          | 146                 | 13 500           | 31 360           | 22,0  | 118        | 20         | 6,5  | 3              | 1,3        | 5  | 20         | 60         | 40       | 3,500 | 3      | K 25×10            |
| K 32×543,5005040,61861,945,51185,629,255 39020 0502571 082K 32×633,96952371882,536,5107927,647 67018 700179831K 32×6345,00056462582,536,5107927,647 67018 700179831K 32×8345,00056462582,549426,557 70024 420156827K 32×1036,3505061,74082,5471112926,265 96030 330134804K 32×1236,35050674082,54713,513725,665 82030 250134800K 40×543,5006340,62082,54713,513725,665 82030 25032,71318K 40×543,5006340,62082,54551085,636,970,90022,50032,71318K 32×1236,35050674082,54713,513725,665 82030 250134800K 40×543,5006340,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 822          | 193                 | 15 650           | 41 540           |       | 73,4       | 8          | 5    |                |            |    |            | 35,1       |          |       | 3      |                    |
| 6       51       6       5,5       16,5       106       83 080       28 400       386       1590         K 32×6       3       3,969       52       37       18       8       2,5       3       6,5       10       79       27,6       47 670       18 700       179       831         K 32×6       3       4       5,000       56       46       25       8       2,5       4       -       -       94       26,5       57 700       2420       156       827         K 32×8       3       6,350       50       61,7       40       8       2,5       4       -       -       94       26,5       57 700       24420       156       827         K 32×10       3       6,350       50       61,7       72,5       40       8       2,5       4       7       11       129       26,5       57 700       24420       156       827         K 32×10       3       6,350       50       61,7       72,5       40       8       2,5       4       7       11       129       26,2       65 960       30 330       134       804       804       804       804                                                                                                                                                                                                                                                                                                                                                                   | Ι    | 1 082        | 257                 | 20 050           | 55 390           | 29,2  | 85,6       | 11         | 5,5  | 4              | 1,9        | 6  | 18         | 40,6       | 50       | 3,500 | 4      | K 32×5             |
| K 32×6 $\frac{3}{4}$ $3,969$ $52$ $\frac{37}{43}$ $18$ $8$ $2,5$ $3$ $6,5$ $10$ $79$ $27,6$ $47670$ $18700$ $179$ $831$ K 32×8 $\frac{3}{4}$ $5,000$ $56$ $46$ $25$ $8$ $2,5$ $4$ $  94$ $26,5$ $57700$ $24420$ $156$ $827$ K 32×8 $\frac{3}{4}$ $6,350$ $50$ $61,7$ $40$ $8$ $2,5$ $4$ $  94$ $26,5$ $57700$ $24420$ $156$ $827$ K 32×10 $\frac{3}{4}$ $6,350$ $50$ $61,7$ $72,5$ $40$ $8$ $2,5$ $4$ $7$ $11$ $129$ $26,5$ $57700$ $24420$ $156$ $827$ K 32×10 $\frac{3}{4}$ $6,350$ $50$ $61,7$ $72,5$ $40$ $8$ $2,5$ $4$ $7$ $11$ $129$ $26,2$ $65960$ $30330$ $134$ $804$ K 32×12 $\frac{3}{4}$ $6,350$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 1 590        | 386                 | 28 400           | 83 080           |       | 106        | 16,5       | 5,5  |                |            |    |            | 51         |          |       | 6      |                    |
| K 32×8 $\frac{3}{4}$ 5,000       56 $\frac{46}{54}$ 25       8       2,5       4       -       -       94       26,5       57 700       24 420       156       827         K 32×10 $\frac{3}{4}$ 6,350       50 $\frac{61,7}{72,5}$ 40       8       2,5       4       7       11       129       26,5       57 700       24 420       156       827         K 32×10 $\frac{3}{4}$ 6,350       50 $\frac{61,7}{72,5}$ 40       8       2,5       4       7       11       129       26,2       65 960       30 330       134       804         K 32×12 $\frac{3}{4}$ 6,350       50 $\frac{67}{7}$ 40       8       2,5       4       7       11       129       26,2       65 960       30 330       134       804         K 32×12 $\frac{3}{4}$ 6,350       50 $\frac{67}{7}$ 40       8       2,5       4       7       13,5       137       25,6       65 820       30 250       134       800         K 40×5       4       3,500       63       40,6       20       8       2,5       4       55       100       85,                                                                                                                                                                                                                                                                                                                                                                                                   | Е    | 831          | 179                 | 18 700           | 47 670           | 27.6  | 79         | 10         | 6.5  | 3              | 2.5        | 8  | 18         | 37         | 52       | 3,969 | 3      | K 32×6             |
| K 32×8 $\frac{3}{4}$ 5,000       56 $\frac{46}{54}$ 25       8       2,5       4       -       -       94       26,5       37,700       24 20       156       827         K 32×10 $\frac{3}{4}$ 6,350       50 $\frac{61,7}{72,5}$ 40       8       2,5       4       7       11       129       26,2       65 960       30 330       134       804         K 32×10 $\frac{4}{4}$ 6,350       50 $\frac{61,7}{72,5}$ 40       8       2,5       4       7       11       129       26,2       65 960       30 330       134       804         K 32×12 $\frac{3}{4}$ 6,350       50 $\frac{67}{80}$ 40       8       2,5       4       7       13,5       137       25,6       65 820       30 250       134       800         K 40×5       4       3,500       63       40,6       20       8       2,5       4       55       100       85,6       36,9       70 900       22 500       327       1318         K 40×5       4       3,500       63       40,6       20       8       2,5       4       55       100       85,6                                                                                                                                                                                                                                                                                                                                                                                             |      | 1093         | 239                 | 23 900           | 63 560           |       | 91         | 12,5       |      |                |            |    |            | 43         | -        |       | 4      |                    |
| K 32×10 $\frac{3}{4}$ 6,350       50 $\frac{61,7}{72,5}$ 40       8       2,5       4       7 $\frac{11}{16}$ $\frac{129}{152,5}$ $\frac{26,2}{87,940}$ $\frac{65,960}{38,900}$ $\frac{30,300}{179}$ $\frac{134}{1057}$ K 32×12 $\frac{3}{4}$ 6,350       50 $\frac{67}{80}$ $\frac{40}{60}$ 8 $2,5$ $\frac{4}{7}$ $\frac{71}{16}$ $\frac{129}{152,5}$ $\frac{26,2}{87,940}$ $\frac{65,960}{38,900}$ $\frac{30,300}{179}$ $\frac{134}{1057}$ K 32×12 $\frac{3}{4}$ 6,350 $50$ $\frac{67}{80}$ $\frac{40}{80}$ $\frac{2}{25}$ $\frac{4}{164}$ $\frac{7}{25,6}$ $\frac{65,820}{87,750}$ $\frac{30,250}{38,740}$ $\frac{134}{178}$ $\frac{800}{1050}$ K 40×5 $\frac{4}{3}$ $\frac{3,500}{63}$ $\frac{63}{63}$ $\frac{2}{20}$ $\frac{8}{8}$ $\frac{2}{5,5}$ $\frac{4}{164}$ $\frac{35,6}{25,66}$ $\frac{36,9}{70,900}$ $\frac{22,500}{22,500}$ $\frac{32,7}{1318}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ε    | 827          | 150                 | 24 420           | 5/ /00           | 26,5  | 94         | -          | -    | 4              | 2,5        | 8  | 25         | 40         | 56       | 5,000 | 3      | K 32×8             |
| K 32×10 $3$ 6,350 $50$ $71,7$ $40$ $8$ $2,5$ $4$ $7$ $11$ $125$ $26,2$ $87,940$ $38,900$ $179$ $1057$ K 32×12 $3$ $6,350$ $50$ $67$ $40$ $8$ $2,5$ $4$ $7$ $11$ $125$ $26,2$ $87,940$ $38,900$ $179$ $1057$ K 32×12 $3$ $6,350$ $50$ $67$ $40$ $8$ $2,5$ $4$ $7$ $13,5$ $137$ $25,6$ $65,820$ $30,250$ $134$ $800$ K 40×5 $4$ $3,500$ $63$ $40,6$ $20$ $8$ $2,5$ $4$ $7$ $13,5$ $137$ $25,6$ $65,820$ $30,250$ $134$ $800$ K 40×5 $4$ $3,500$ $63$ $40,6$ $20$ $8$ $2,5$ $4$ $55$ $100$ $85,6$ $36,9$ $70,900$ $22,500$ $327$ $1318$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 1 U88<br>804 | 208                 | 30 330           | 70 950           |       | 110        | 11         |      |                |            |    |            | 54<br>61 7 |          |       | 4      |                    |
| K 32×12 $3 \\ 4$ 6,350       50 $67 \\ 80$ 40       8       2,5       4       7 $13,5 \\ 20$ $137 \\ 164$ $25,6$ $65 \\ 820$ $30 \\ 500$ $134 \\ 178$ $800 \\ 105$ K 32×12 $3 \\ 4$ $6,350$ $50$ $67 \\ 80$ $40$ $8$ $2,5$ $4$ $7$ $13,5 \\ 20$ $137 \\ 164$ $25,6$ $65 \\ 820$ $30 \\ 250$ $134 \\ 178$ $1050$ K 40×5 $4$ $3.500$ $63$ $40,6$ $20$ $8$ $2.5$ $4$ $55$ $10$ $85,6$ $36,9$ $70 \\ 900$ $22 \\ 500$ $327$ $1318$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ι    | 1057         | 179                 | 38 900           | 87 940           | 26,2  | 152 5      | 16         | 7    | 4              | 2,5        | 8  | 40         | 72.5       | 50       | 6,350 | 4      | K 32×10            |
| K 32×12       4       6,350       50       80       40       8       2,5       4       7       10,9       164       25,6       87,750       38,740       178       1050         K 40×5       4       3,500       63       40,6       20       8       2,5       4       5       10       85,6       36,9       70,900       22,500       327       1318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 800          | 134                 | 30 250           | 65 820           |       | 137        | 13.5       |      |                |            |    |            | 67         |          |       | 3      |                    |
| K40×5 4 3.500 63 40,6 20 8 2.5 4 5.5 10 85,6 36,9 70,900 22,500 327 1,318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I    | 1 050        | 178                 | 38 740           | 87 750           | 25,6  | 164        | 20         | 7    | 4              | 2,5        | 8  | 40         | 80         | 50       | 6,350 | 4      | K 32×12            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1    | 1 318        | 327                 | 22 500           | 70 900           | 26.0  | 85,6       | 10         |      | 4              | 7.5        | 0  | 20         | 40,6       | 62       | 2 500 | 4      | K 40×5             |
| (R/L) 6 5,55 51 55 51 55 51 55 51 55 50 51 106 55,5 106 55,5 106 370 31 850 490 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I    | 1 900        | 490                 | 31 850           | 106 370          | 30,9  | 106        | 15,5       | 5,5  | 4              | 2,5        | 0  | 20         | 51         | 05       | 5,500 | 6      | (R/L)              |
| 3         51,3         20         15,5         104,6         74730         28 070         200         1 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 1 020        | 200                 | 28 070           | 74 730           |       | 104,6      | 15,5       |      |                |            |    | 20         | 51,3       |          |       | 3      |                    |
| K 40×8         4         5,000         63         60         40         8         2,5         4         7         11         124,08         34,5         99 600         35 950         266         1 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ι    | 1 340        | 266                 | 35 950           | 99 600           | 34,5  | 124,08     | 11         | 7    | 4              | 2,5        | 8  | 40         | 60         | 63       | 5,000 | 4      | <b>K 40×8</b>      |
| <u>6</u> 76,7 40 <u>18</u> 156,7 <u>149 500 50 950 399 1 970</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 1 970        | 399                 | 50 950           | 149 500          |       | 156,7      | 18         |      |                |            |    | 40         | 76,7       |          |       | 6      |                    |
| <b>K 40×10</b> 3 62,3 11 129 8/ 800 36 180 1/3 1 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 1010         | 1/3                 | 36 180           | 8/800            | 22.1  | 129        | 11         | 75   |                | 25         |    | 40         | 62,3       | ()       | 6 350 | 3      | K 40×10            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1    | 1 3 3 0      | 230                 | 40 300           | 175 600          | 33,1  | 102.0      | 10,5<br>70 | 7,5  | 4              | 2,5        | ð  | 40         | /3,1       | 03       | 0,350 | 4      | (R/L)              |
| 2/ 1/5 000 05 050 345 1950<br>3 70 15 1/2 102 800 /5 220 150 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 000          | 545<br>150          | 02 02U<br>45 220 | 102 800          |       | 1/12       | 15         |      |                |            |    |            | 70         |          |       | 2      |                    |
| <b>K 40 × 12</b> $\frac{3}{4}$ 7,938 76 $\frac{70}{82}$ 40 8 2,5 4 8,5 13 142 31,5 102 000 43 230 130 990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E    | 1 300        | 200                 | 57 900           | 137 050          | 31,5  | 166        | 21         | 8,5  | 4              | 2,5        | 8  | 40         | 82         | 76       | 7,938 | 4      | K 40×12            |
| 2 68.1 14 143.1 65.760 29.500 106 683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 683          | 106                 | 29,500           | 65 760           |       | 143.1      | 14         |      |                |            |    |            | 68.1       |          |       | 2      |                    |
| <b>K40×15</b> 3 7,144 70 85,6 40 8 2,5 4 9 23 180,6 33,6 98 640 41 760 160 1005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 1 0 0 5      | 160                 | 41 760           | 98 6 4 0         | 33.6  | 180.6      | 23         | 9    | 4              | 2.5        | 8  | 40         | 85.6       | 70       | 7,144 | 3      | K 40×15            |
| 4 101,6 29 204 131 520 53 500 213 1 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 1 320        | 213                 | 53 500           | 131 520          |       | 204        | 29         |      |                |            |    |            | 101,6      |          |       | 4      |                    |





### Nut types A, A+A



| K d <sub>o</sub> ×P | i | D <sub>w</sub>                          | D <sub>1</sub>                          | L <sub>1</sub> ±1<br>(A) | L <sub>4</sub> | b  | t,   | d2 | L <sub>m</sub> | L <sub>p</sub> | L <sub>7</sub> ±2<br>(A+A) | assy.<br>arbor                          | C,      | C       | k               | R       | recirc.<br>type |
|---------------------|---|-----------------------------------------|-----------------------------------------|--------------------------|----------------|----|------|----|----------------|----------------|----------------------------|-----------------------------------------|---------|---------|-----------------|---------|-----------------|
| -                   | - | mm                                      | mm                                      | mm                       | mm             | mm | mm   | mm | mm             | mm             | mm                         | mm                                      | N       | N       | $N/\mu m^{3/2}$ | N/µm    | -               |
| K 50×5              | 4 | 3 500                                   | 75                                      | 40,6                     | 20             | 8  | 2.5  | 4  | 55             | 10             | 85,6                       | 47 3                                    | 90 870  | 25 060  | 413             | 1 590   | 1               |
|                     | 6 | 5,500                                   | ,,,,                                    | 51                       | 20             |    | 2,5  |    | 5,5            | 15,5           | 106                        | 17,5                                    | 136 310 | 35 520  | 620             | 2 350   | · ·             |
|                     | 3 | 5 000                                   | 75                                      | 53,3                     | 20             | 0  | 25   | 1  | 7              | 16,5           | 112                        | 115                                     | 95 200  | 31500   | 254             | 1 240   |                 |
| N 30×0              | 4 | 5,000                                   | 75                                      | 78.7                     | 40             | 0  | 2,5  | 4  | /              | 19.5           | 161.4                      | 44,5                                    | 120 940 | 57 250  | 508             | 2 410   | 1               |
|                     | 3 |                                         |                                         | 62.3                     |                |    |      |    |                | 11             | 129                        |                                         | 115 185 | 42 000  | 221             | 1 2 5 0 |                 |
| K 50×10             | 4 | 6,350                                   | 75                                      | 73,1                     | 40             | 8  | 2,5  | 4  | 7,5            | 16,5           | 153,1                      | 43,1                                    | 153 580 | 53 780  | 295             | 1 640   | I               |
|                     | 6 |                                         |                                         | 93,9                     |                |    |      |    |                | 27             | 193,9                      |                                         | 230 370 | 76 220  | 442             | 2 420   |                 |
| K 50×12             | 3 | 7 9 3 8                                 | 90                                      | 70                       | 40             | 10 | 29   | 4  | 9              | 15             | 142                        | 41 5                                    | 136 820 | 53 950  | 193             | 1 240   | F               |
|                     | 4 | 1,550                                   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 82                       | 10             | 10 | 2,5  |    |                | 21             | 166                        | 5                                       | 182 440 | 69 100  | 258             | 1 6 3 0 | -               |
| K 50×15             | 3 | 7,938                                   | 75                                      | 86,/                     | 40             | 8  | 2,5  | 4  | 10             | 23,5           | 1/6,/                      | 41,5                                    | 136 600 | 53 830  | 193             | 1 240   | I               |
|                     | 4 |                                         |                                         | 00.7                     |                |    |      |    |                | 20 5           | 210                        |                                         | 136 120 | 53 570  | 107             | 1 050   |                 |
| K 50×20             | 4 | 7,938                                   | 75                                      | 124.2                    | 40             | 8  | 2,5  | 4  | 10             | 47             | 254.2                      | 42,1                                    | 181 500 | 68 600  | 256             | 1 6 2 0 | I               |
|                     | 3 |                                         |                                         | 46                       |                |    |      |    |                | 11.5           | 94                         |                                         | 122 500 | 35 300  | 325             | 1 520   | -               |
| K 63×8              | 4 | 5,000                                   | 95                                      | 54                       | 25             | 10 | 2,9  | 4  | 7,5            | 14,5           | 110                        | 57,5                                    | 163 300 | 45 215  | 433             | 2 000   | Ł               |
|                     | 3 |                                         |                                         | 73,1                     |                |    |      |    |                | 16,5           | 153,1                      |                                         | 153 500 | 48 570  | 284             | 1 550   |                 |
| K 63×10             | 4 | 6,350                                   | 90                                      | 85,5                     | 40             | 10 | 2,9  | 5  | 7,5            | 22,7           | 165                        | 56,1                                    | 204 650 | 62 200  | 378             | 2 000   | I               |
|                     | 6 |                                         |                                         | 93,9                     |                |    |      |    |                | 27             | 194                        |                                         | 306 980 | 88 150  | 568             | 3 000   |                 |
| K 63×12             | 4 | 7,938                                   | 90                                      | 88                       | 40             | 10 | 2,9  | 5  | 9              | 24             | 184                        | 54,4                                    | 239 400 | 80 100  | 332             | 2 040   | I               |
|                     | 4 |                                         |                                         | 115                      |                |    |      |    |                | 30,5           | 233                        |                                         | 249 940 | 82 350  | 332             | 2 990   |                 |
| K 63×16             | 6 | 7,938                                   | 90                                      | 147.3                    | 40             | 10 | 2,9  | 5  | 11,5           | 53.5           | 302                        | 54,4                                    | 374 900 | 116 700 | 498             | 3 020   | I               |
| K (2)-20            | 3 | 10 210                                  | ٥r                                      | 121,7                    | 40             | 17 | 25   | r  | 15             | 40,5           | 238,5                      | F2 0                                    | 230 680 | 86 560  | 212             | 1 5 4 0 |                 |
| K 03×20             | 4 | 10,319                                  | 95                                      | 143,4                    | 40             | 12 | 3,5  | 2  | CI IS          | 51,5           | 293,4                      | 53,0                                    | 307 580 | 110 860 | 283             | 2 040   | I               |
| K 80×10             | 4 | 7144                                    | 105                                     | 72,5                     | 40             | 12 | 35   | 5  | 9              | 16             | 152,5                      | 72 0                                    | 301 500 | 82 990  | 457             | 2 540   | 1               |
|                     | 6 | .,                                      |                                         | 93,9                     |                |    | 5,5  | -  | -              | 26,5           | 193,9                      | ,.                                      | 452 250 | 117 600 | 685             | 3 740   | <u> </u>        |
| K 80×12             | 3 | 7020                                    | 110                                     | /6                       | 40             | 12 | 25   |    | •              | 18             | 156                        | 71 4                                    | 239 300 | 72 200  | 323             | 1 920   |                 |
| (R/L)               | 4 | 7,938                                   | 110                                     | 89<br>114                | 40             | 12 | 3,5  | S  | 9              | 24,5           | 102                        | /1,4                                    | 3190/0  | 92 450  | 430             | 2 530   | 1               |
|                     | 3 |                                         |                                         | 78.3                     |                |    |      |    |                | 19             | 163                        |                                         | 239 270 | 72 170  | 323             | 1 920   |                 |
| K 80×1/2"           | 4 | 7,938                                   | 110                                     | 92                       | 40             | 12 | 3.5  | 5  | 9              | 26             | 187.2                      | 71,4                                    | 319 020 | 92 430  | 430             | 2 530   | 1               |
|                     | 6 | ,                                       |                                         | 118,5                    |                |    |      |    |                | 39             | 241,3                      | ,                                       | 478 540 | 131 000 | 645             | 3 730   |                 |
|                     | 3 |                                         |                                         | 92                       |                |    |      |    |                | 21             | 188                        |                                         | 239 100 | 72 100  | 322             | 1 920   |                 |
| K 80×16             | 4 | 7,938                                   | 130                                     | 108                      | 50             | 12 | 3,5  | 5  | 12             | 29             | 220                        | 71,4                                    | 318 790 | 92 330  | 430             | 2 530   | I               |
|                     | 6 |                                         |                                         | 164                      |                |    |      |    |                | 18,5           | 332                        |                                         | 478 180 | 130 850 | 645             | 3 720   |                 |
| V 00.200            | 3 | 12 700                                  | 175                                     | 121,/                    | 70             | 14 | 25   | E  | 14             | 25,5           | 248,3                      | 66.6                                    | 345 940 | 124 430 | 244             | 1920    |                 |
| K 0U×2U             | 4 | 12,700                                  | 125                                     | 145,4                    | 70             | 14 | 5,5  | 5  | 14             | 50,5<br>62,5   | 295,4                      | 00,0                                    | 401 200 | 225 800 | 520<br>//88     | 2 520   | 1               |
|                     | 3 |                                         |                                         | 141                      |                |    |      | _  |                | 30.5           | 285                        |                                         | 302 820 | 100 400 | 276             | 1 930   |                 |
| K 80×24             | 4 | 10,319                                  | 150                                     | 165                      | 80             | 14 | 4,5  | 5  | 16             | 42,5           | 333                        | 70,0                                    | 403 760 | 128 580 | 368             | 2 550   | I               |
| K 100×10            | 6 | 7,144                                   | 125                                     | 93,9                     | 50             | 14 | 4,5  | 5  | 8,5            | 22             | 194                        | 92,0                                    | 565 820 | 129 090 | 867             | 4 520   | I               |
| K 100×12            | 3 | 7,938                                   | 150                                     | 70                       | 40             | 14 | 4.5  | 5  | 10.5           | 15             | 142                        | 91.3                                    | 307 740 | 80 930  | 409             | 2 340   | F               |
|                     | 4 | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 150                                     | 82                       | .0             |    | .,,, | ,  | 10,5           | 21             | 166                        | 2,12                                    | 410 320 | 103 650 | 545             | 3 080   |                 |
| K 100×16            | 3 | 7,938                                   | 150                                     | 92                       | 50             | 14 | 4,5  | 5  | 12             | 21             | 188                        | 91,2                                    | 307 560 | 80 860  | 409             | 2 3 4 0 | Ι               |
|                     | 4 |                                         |                                         | 145                      |                |    |      |    |                | 32.5           | 220                        |                                         | 605 100 | 184 980 | 417             | 3 120   |                 |
| K 100×20            | 6 | 12,700                                  | 150                                     | 186.7                    | 80             | 14 | 4,5  | 5  | 14             | 53             | 380                        | 86,5                                    | 907 650 | 262 155 | 625             | 4 600   | I               |
| V 100 - 24          | 3 | 12 700                                  | 176                                     | 141                      | 00             | 14 | 4 5  | -  | 10             | 30,5           | 285                        | 00.1                                    | 453 420 | 144 250 | 312             | 2 370   | I               |
| K 100×24            | 4 | 12,700                                  | 1/6                                     | 165                      | 80             | 14 | 4,5  | 5  | 16             | 42,5           | 333                        | 88,1                                    | 604 560 | 184 740 | 416             | 3 120   |                 |
| K 125×20            | 4 | 12 700                                  | 185                                     | 135                      | 80             | 16 | 45   | 5  | 14             | 27,5           | 275                        | 111 5                                   | 778 250 | 209 300 | 531             | 3 820   |                 |
| A 125/20            | 6 | 12,700                                  | 105                                     | 205                      | 00             | 10 | در.  |    | 17             | 23             | 425                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1167380 | 296 620 | 796             | 5 600   |                 |



### Nut types AP, AP+A, APR





| K d <sub>°</sub> ×b | i           | D <sub>w</sub> | D <sub>1</sub> | D <sub>2</sub> | D <sub>3</sub> | L <sub>2</sub> ±1<br>(AP) | L <sub>3</sub> | d   | L <sub>6</sub> ±2<br>(AP+A) | L <sub>s</sub> ±1<br>(APR) | assy.<br>arbor | ٢                            | ۲,                         | k                   | R                       | recirc.<br>type |
|---------------------|-------------|----------------|----------------|----------------|----------------|---------------------------|----------------|-----|-----------------------------|----------------------------|----------------|------------------------------|----------------------------|---------------------|-------------------------|-----------------|
| -                   | -           | mm             | mm             | mm             | mm             | mm                        | mm             | mm  | mm                          | mm                         | mm             | N                            | N                          | N/µm <sup>3/2</sup> | N/µm                    | -               |
| K 12×3              | 2<br>3      | 2,000          | 22             | 37             | 29             | 27<br>30                  | 10             | 4,5 | 47<br>53                    | -                          | 9,7            | 4 940<br>7 410               | 2 840<br>4 020             | 61<br>92            | 215<br>282              | E               |
| K 12×4              | 2<br>3      | 2,500          | 24             | 39             | 31             | 32<br>36                  | 10             | 4,5 | 56<br>64                    | -                          | 9,2            | 6 630<br>9 950               | 3 910<br>5 540             | 53<br>79            | 220<br>310              | E               |
| K 12×5              | 2           | 2,500          | 24             | 39             | 31             | 34                        | 10             | 4,5 | 59                          | -                          | 9,2            | 6 6 1 0                      | 3 900                      | 53                  | 220                     | E               |
| K 16×3              | 3<br>4      | 2,000          | 27             | 46             | 36             | 30<br>33                  | 10             | 6,4 | 53<br>58                    | -                          | 13,7           | 10 840<br>14 500             | 4 980<br>6 400             | 126<br>168          | 424<br>545              | E               |
| K 16×4              | 3<br>4      | 2,500          | 29             | 49             | 39             | 36<br>40                  | 10             | 6,4 | 64<br>72                    | -                          | 13,2           | 14 100<br>18 800             | 6 880<br>8 800             | 110<br>147          | 422<br>548              | E               |
| K 16×5              | 2<br>3      | 3,175          | 32             | 58             | 45             | 37<br>42                  | 10             | 6,4 | 64<br>74                    | -                          | 12,5           | 10 990<br>16 500             | 6 150<br>8 700             | 63<br>95            | 284<br>418              | E               |
| K 20×3              | 3<br>4      | 2,000          | 36             | 58             | 47             | 30<br>33                  | 10             | 6,4 | 55<br>59                    | -                          | 18,1           | 13 810<br>18 420             | 5 600<br>7 165             | 161<br>214          | 497<br>674              | E               |
| K 20×4              | 3<br>4      | 2,500          | 36             | 58             | 47             | 36<br>40                  | 10             | 6,4 | 64<br>72                    | -                          | 17,6           | 18 260<br>24 350             | 7 910<br>10130             | 141<br>188          | 522<br>696              | E               |
| K 20×5              | 3           | 3,500          | 36             | 58             | 47             | 42<br>46                  | 10             | 6,4 | 81<br>90                    | -                          | 17,2           | 24 860<br>33 150             | 11 920<br>15 260           | 115<br>153          | 518<br>695              | I               |
| K 25×3              | 3<br>4      | 2,000          | 40             | 62             | 51             | 32<br>35                  | 12             | 6,4 | 57<br>62                    | -                          | 22,7           | 17 760<br>23 686             | 6 270<br>8 034             | 204<br>272          | 619<br>825              | E               |
| K 25×4              | 3<br>4      | 2,500          | 40             | 62             | 51             | 38<br>42                  | 12             | 6,4 | 66<br>74                    | -                          | 22,2           | 23 260<br>31 018             | 8 890<br>11 380            | 180<br>239          | 639<br>844              | E               |
| K 25×5<br>(R/L)     | 3           | 3,500          | 40             | 62             | 51             | 44                        | 12             | 6,4 | 83<br>95                    | 63<br>-                    | 22,0           | 31 550<br>42 070             | 13 600<br>17 500           | 148<br>197          | 646<br>855              | I               |
| K 25×6              | 3<br>4      | 3,969          | 44             | 67             | 55             | 49<br>55                  | 12             | 6,4 | 91<br>103                   | -                          | 20,7           | 34 720<br>46 290             | 15 690<br>20 100           | 137<br>182          | 644<br>858              | E               |
| K 25×8              | 2           | 5,000          | 47             | 71             | 59             | 50<br>58                  | 12             | 6,4 | 90<br>106                   | -                          | 19,6           | 27 240<br>40 860             | 13 900<br>19 700           | 79<br>118           | 424<br>620              | E               |
| K 25×10             | 3           | 3,500          | 40             | 62             | 51             | 63                        | 12             | 6,4 | 122                         | -                          | 22,0           | 31 360                       | 13 500                     | 146                 | 643                     | 1               |
| K 32×5              | 3<br>4<br>6 | 3,500          | 50             | 80             | 65             | 44<br>50<br>60            | 12             | 8,4 | 83<br>94<br>114             | 63<br>75<br>-              | 29,2           | 41 540<br>55 390<br>83 080   | 15 650<br>20 050<br>28 400 | 193<br>257<br>386   | 822<br>1 082<br>1 590   | I               |
| K 32×6              | 3<br>4      | 3,969          | 52             | 76             | 64             | 49<br>55                  | 12             | 8,4 | 91<br>103                   | -                          | 27,6           | 47 670<br>63 560             | 18 700<br>23 900           | 179<br>239          | 831<br>1 093            | E               |
| K 32×8              | 3<br>4      | 5,000          | 56             | 85             | 71             | 58<br>66                  | 12             | 8,4 | 106<br>122                  | -                          | 26,5           | 57 700<br>76 950             | 24 420<br>31 300           | 156<br>208          | 827<br>1 088            | E               |
| K 32×10             | 3<br>4      | 6,350          | 50             | 80             | 65             | 69<br>80                  | 12             | 8,4 | 138<br>157                  | 108<br>-                   | 26,2           | 65 960<br>87 940             | 30 330<br>38 900           | 134<br>179          | 804<br>1 057            | I               |
| K 32×12             | 3<br>4      | 6,350          | 50             | 80             | 65             | 74<br>87                  | 12             | 8,4 | 144<br>171                  | -                          | 25,6           | 65 820<br>87 750             | 30 250<br>38 740           | 134<br>178          | 800<br>1 050            | I               |
| K 40×5<br>(R/L)     | 4<br>6      | 3,500          | 63             | 93             | 78             | 52<br>62                  | 14             | 8,4 | 96<br>116                   | 82<br>89                   | 36,9           | 70 900<br>106 370            | 22 500<br>31 850           | 327<br>490          | 1 318<br>1 900          | I               |
| K 40×8              | 3<br>4<br>6 | 5,000          | 63             | 93             | 78             | 60<br>69<br>86            | 14             | 8,4 | 115<br>133<br>167           | -<br>-                     | 34,5           | 74 730<br>99 600<br>149 500  | 28 070<br>35 950<br>50 950 | 200<br>266<br>399   | 1 020<br>1 340<br>1 970 | I               |
| K 40×10<br>(R/L)    | 3<br>4<br>6 | 6,350          | 63             | 93             | 78             | 72<br>83<br>102           | 14             | 8,4 | 141<br>161<br>200           | 111<br>134                 | 33,1           | 87 800<br>117 050<br>175 600 | 36 180<br>46 300<br>65 650 | 173<br>230<br>345   | 1 010<br>1 330<br>1 950 | I               |
| K 40×12             | 3<br>4      | 7,938          | 76             | 110            | 92             | 84<br>96                  | 14             | 8,4 | 156<br>180                  | -                          | 31,5           | 102 800<br>137 050           | 45 230<br>57 900           | 150<br>200          | 990<br>1 300            | E               |
| K 40×15             | 2<br>3<br>4 | 7,144          | 70             | 100            | 85             | 74<br>95<br>112           | 14             | 8,4 | 146<br>190<br>210           | -                          | 33,6           | 65 760<br>98 640<br>131 520  | 29 500<br>41 760<br>53 500 | 106<br>160<br>213   | 683<br>1 005<br>1 320   | I               |



### Nut types AP, AP+A, APR





| K d <sub>°</sub> ×b | i           | D <sub>w</sub> | D <sub>1</sub> | D <sub>2</sub> | D <sub>3</sub> | L <sub>2</sub> ±1<br>(AP) | L, | d    | L <sub>6</sub> ±2<br>(AP+A) | L,±1<br>(APR)   | assy.<br>arbor | ¢,                            | C                             | k                   | R                       | recirc.<br>type |
|---------------------|-------------|----------------|----------------|----------------|----------------|---------------------------|----|------|-----------------------------|-----------------|----------------|-------------------------------|-------------------------------|---------------------|-------------------------|-----------------|
| -                   | -           | mm             | mm             | mm             | mm             | mm                        | mm | mm   | mm                          | mm              | mm             | N                             | N                             | N/µm <sup>3/2</sup> | N/µm                    | -               |
| K 50×5              | 4<br>6      | 3,500          | 75             | 110            | 93             | 54<br>64                  | 16 | 10,5 | 98<br>118                   | 80<br>102       | 47,3           | 90 870<br>136 310             | 25 060<br>35 520              | 413<br>620          | 1 590<br>2 350          | I               |
| K 50×8              | 3<br>4<br>6 | 5,000          | 75             | 110            | 93             | 62<br>71<br>91            | 16 | 10,5 | 121<br>137<br>174           | -               | 44,5           | 95 200<br>126 940<br>190 410  | 31 500<br>40 400<br>57 250    | 254<br>339<br>508   | 1 240<br>1 640<br>2 410 | I               |
| K 50×10             | 3<br>4<br>6 | 6,350          | 75             | 110            | 93             | 74<br>85<br>106           | 16 | 10,5 | 142<br>163<br>204           | 113<br>140<br>- | 43,1           | 115 185<br>153 580<br>230 370 | 42 000<br>53 780<br>76 220    | 221<br>295<br>442   | 1 250<br>1 640<br>2 420 | I               |
| K 50×12             | 3<br>4      | 7,938          | 89             | 132            | 110            | 86<br>98                  | 16 | 10,5 | 158<br>182                  | -               | 41,5           | 136 820<br>182 440            | 53 950<br>69 100              | 193<br>258          | 1 240<br>1 630          | E               |
| K 50×15             | 3<br>4      | 7,938          | 75             | 110            | 93             | 98<br>113                 | 16 | 10,5 | 188<br>222                  | -               | 41,5           | 136 600<br>182 140            | 53 830<br>68 940              | 193<br>257          | 1 240<br>1 630          | I               |
| K 50×20             | 3<br>4      | 7,938          | 75             | 110            | 93             | 110<br>135                | 16 | 10,5 | 215<br>265                  | 195<br>-        | 42,1           | 136 120<br>181 500            | 53 570<br>68 600              | 192<br>256          | 1 230<br>1 620          | I               |
| K 63×8              | 3<br>4      | 5,000          | 95             | 137            | 115            | 64<br>72                  | 18 | 10,5 | 112<br>128                  | -               | 57,5           | 122 500<br>163 300            | 35 300<br>45 215              | 325<br>433          | 1 520<br>2 000          | E               |
| K 63×10             | 3<br>4<br>6 | 6,350          | 90             | 125            | 108            | -<br>89<br>110            | 18 | 10,5 | -<br>167<br>209             | 115<br>138<br>- | 56,1           | 153 500<br>204 650<br>306 980 | 48 570<br>62 200<br>88 150    | 284<br>378<br>568   | 1 550<br>2 000<br>3 000 | I               |
| K 63×12             | 4           | 7,938          | 90             | 125            | 108            | 97<br>124                 | 18 | 10,5 | 192<br>242                  | -               | 54,4           | 239 400<br>359 120            | 80 100<br>113 500             | 332<br>499          | 2 040<br>2 990          | I               |
| K 63×16             | 4<br>6      | 7,938          | 90             | 125            | 108            | 125<br>159                | 20 | 10,5 | 245<br>311                  | -               | 54,4           | 249 940<br>374 900            | 82 350<br>116 700             | 332<br>498          | 2 050<br>3 020          | I               |
| K 63×20             | 3<br>4      | 10,319         | 95             | 135            | 115            | 129<br>150                | 20 | 13   | 240<br>285                  | 200             | 53,0           | 230 680<br>307 580            | 86 560<br>110 860             | 212<br>283          | 1 540<br>2 040          | I               |
| K 80×10             | 4<br>6      | 7,144          | 105            | 145            | 125            | 87<br>112                 | 20 | 13   | 169<br>210                  | -               | 72,0           | 301 500<br>452 250            | 82 990<br>117 600             | 457<br>685          | 2 540<br>3 740          | I               |
| K 80×12<br>(R/L)    | 3<br>4<br>6 | 7,938          | 110            | 150            | 130            | 90<br>100<br>128          | 20 | 13   | 172<br>194<br>247           | -               | 71,4           | 239 300<br>319 070<br>478 600 | 72 200<br>92 450<br>131 030   | 323<br>430<br>645   | 1 920<br>2 530<br>3 700 | I               |
| K 80×1/2"           | 3<br>4<br>6 | 7,938          | 110            | 150            | 130            | 94<br>108<br>134          | 20 | 13   | 176<br>203<br>257           | -               | 71,4           | 239 270<br>319 020<br>478 540 | 72 170<br>92 430<br>131 000   | 323<br>430<br>645   | 1 920<br>2 530<br>3 730 | I               |
| K 80×16             | 3<br>4<br>6 | 7,938          | 126            | 172            | 148            | 112<br>128<br>184         | 20 | 13   | 208<br>240<br>352           | -               | 71,4           | 239 100<br>318 790<br>478 180 | 72 100<br>92 330<br>130 850   | 322<br>430<br>645   | 1 920<br>2 530<br>3 720 | I               |
| K 80×20             | 3<br>4<br>6 | 12,700         | 125            | 165            | 145            | 138<br>160<br>200         | 25 | 13   | 265<br>315<br>397           | -               | 66,6           | 345 940<br>461 250<br>691 900 | 124 430<br>159 360<br>225 800 | 244<br>326<br>488   | 1 920<br>2 520<br>3 250 | I               |
| K 80×24             | 3<br>4      | 10,319         | 150            | 210            | 178            | 166<br>190                | 25 | 13   | 310<br>358                  | -               | 70,0           | 302 820<br>403 760            | 100 400<br>128 580            | 276<br>368          | 1 930<br>2 550          | I               |
| K 100×10            | 6           | 7,144          | 125            | 165            | 145            | 114                       | 22 | 13   | 213                         | -               | 92,0           | 565 820                       | 129 090                       | 867                 | 4 520                   | I               |
| K 100×12            | 3<br>4      | 7,938          | 150            | 210            | 178            | 95<br>107                 | 25 | 13   | 167<br>191                  | -               | 91,3           | 307 740<br>410 320            | 80 930<br>103 650             | 409<br>545          | 2 340<br>3 080          | E               |
| K 100×16            | 3<br>4      | 7,938          | 150            | 210            | 178            | 117<br>133                | 25 | 13   | 213<br>245                  | -               | 91,2           | 307 560<br>410 090            | 80 860<br>103 560             | 409<br>545          | 2 340<br>3 080          | I               |
| K 100×20            | 4<br>6      | 12,700         | 150            | 202            | 176            | 167<br>205                | 30 | 17   | 322<br>402                  | -               | 86,5           | 605 100<br>907 650            | 184 980<br>262 155            | 417<br>625          | 3 120<br>4 600          | I               |
| K 100×24            | 3<br>4      | 12,700         | 176            | 237            | 199            | 171<br>195                | 30 | 17   | 315<br>363                  | -               | 88,1           | 453 420<br>604 560            | 144 250<br>184 740            | 312<br>416          | 2 370<br>3 120          | I               |
| K 125×20            | 4<br>6      | 12,700         | 185            | 238            | 212            | 165<br>235                | 30 | 17   | 305<br>400                  | -               | 111,5          | 778 250<br>1167 380           | 209 300<br>296 620            | 531<br>796          | 3 820<br>5 600          | I               |



### Nut type APVR







### Application: Chapter 2.4.

| K d <sub>°</sub> ×b | i   | D <sub>w</sub> | <b>D</b> <sub>1</sub> | D <sub>2</sub> | D <sub>3</sub> | d    | L <sub>1</sub> ±2 | L <sub>2</sub> | L, | L4 | L <sub>s</sub> | assy. | ۲       | C       | k                   | R              |
|---------------------|-----|----------------|-----------------------|----------------|----------------|------|-------------------|----------------|----|----|----------------|-------|---------|---------|---------------------|----------------|
|                     |     |                |                       |                |                |      | (APVR)            |                |    |    |                | arbor |         |         |                     | (for Fv=0,1Ca) |
| -                   | -   | mm             | mm                    | mm             | mm             | mm   | mm                | mm             | mm | mm | mm             | mm    | N       | N       | N/µm <sup>3/2</sup> | N/µm           |
| K 16×16             | 1,5 | 2,500          | 28                    | 49             | 39             | 6,4  | 46                | 24             | 10 | 12 | 12             | 13,2  | 7 860   | 3 950   | 57                  | 231            |
| K 20×20             | 1,5 | 3,500          | 36                    | 58             | 47             | 6,4  | 56                | 30             | 10 | 14 | 14             | 16,3  | 13 370  | 6 690   | 60                  | 286            |
| K 25×15             | 2,2 | 3,969          | 45                    | 70             | 58             | 6,4  | 61                | 33             | 10 | 15 | 15             |       | 29 510  | 13 110  | 109                 | 529            |
| K 25×20             | 1,4 | 3,969          | 45                    | 70             | 58             | 6,4  | 55                | 27             | 10 | 9  | 9              | 21,1  | 18 530  | 8 730   | 68                  | 337            |
| K 25×25             | 1,5 | 3,969          | 45                    | 70             | 58             | 6,4  | 66                | 37             | 10 | 18 | 18             |       | 19 520  | 9 050   | 71                  | 351            |
| K 32×20             | 2,4 | 3,969          | 56                    | 85             | 71             | 8,4  | 79                | 47             | 12 | 12 | 27             |       | 40730   | 15 890  | 152                 | 704            |
| K 32×25             | 2,5 | 3,969          | 56                    | 85             | 71             | 8,4  | 93                | 61             | 12 | 12 | 41             | 28    | 43 660  | 16 640  | 156                 | 727            |
| K 32×32             | 1,5 | 3,969          | 56                    | 85             | 71             | 8,4  | 80                | 48             | 12 | 12 | 28             |       | 25 720  | 10 440  | 91                  | 435            |
| K 40×20             | 4,1 | 6,350          | 70                    | 100            | 85             | 8,4  | 122               | 83             | 14 | 14 | 58             | 34,2  | 139 860 | 52 070  | 259                 | 1 490          |
| K 40×25             | 3,3 | 6,350          | 70                    | 100            | 85             | 8,4  | 119               | 80             | 14 | 14 | 55             | 34,2  | 111 790 | 42 790  | 206                 | 1 200          |
| K 40×32             | 2,4 | 6,350          | 70                    | 100            | 85             | 8,4  | 113               | 74             | 14 | 14 | 49             | 34,2  | 80 335  | 32 010  | 147                 | 871            |
| K 40×40             | 1,5 | 6,350          | 70                    | 100            | 85             | 8,4  | 95                | 56             | 14 | 14 | 31             | 33,1  | 49 370  | 20 874  | 90                  | 543            |
| K 50×32             | 3,3 | 7,144          | 85                    | 120            | 103            | 10,5 | 153               | 110            | 16 | 16 | 77             | 43,1  | 159 295 | 56 560  | 243                 | 1 460          |
| K 50×40             | 2,4 | 7,144          | 85                    | 120            | 103            | 10,5 | 143               | 97             | 16 | 16 | 67             | 43,1  | 114 570 | 42 340  | 174                 | 1 060          |
| K 50×50             | 2,1 | 7,144          | 85                    | 120            | 103            | 10,5 | 141               | 100            | 16 | 16 | 75             | 42,3  | 103 060 | 37 960  | 148                 | 926            |
| K 63×32             | 3,3 | 7,938          | 100                   | 145            | 125            | 13   | 155               | 106            | 18 | 18 | 75             | 55.2  | 221 980 | 72 760  | 293                 | 1 810          |
| K 63×40             | 2,4 | 7,938          | 100                   | 145            | 125            | 13   | 145               | 96             | 18 | 18 | 65             | 55,2  | 160 290 | 54 760  | 211                 | 1 320          |
| K 80×32             | 4,2 | 10,319         | 125                   | 165            | 145            | 13   | 190               | 127            | 25 | 25 | 89             | 70    | 355 670 | 99 760  | 477                 | 2 780          |
| K 80×40             | 3,3 | 10,319         | 125                   | 165            | 145            | 13   | 188               | 125            | 25 | 25 | 87             | 70    | 360 500 | 114 160 | 327                 | 2 260          |

### Nut type APQR







2.

### Application: Chapter 2.4.

| K d <sub>°</sub> ×b | i   | D <sub>w</sub> | D <sub>1</sub> | D <sub>2</sub> | D <sub>3</sub> | d    | L <sub>1</sub> ±2<br>(APQR) | L <sub>2</sub> | L, | L <sub>4</sub> | L  | assy.<br>arbor | C°      | C      | k                   | R<br>(for Fv=0,1Ca) |
|---------------------|-----|----------------|----------------|----------------|----------------|------|-----------------------------|----------------|----|----------------|----|----------------|---------|--------|---------------------|---------------------|
| -                   | -   | mm             | mm             | mm             | mm             | mm   | mm                          | mm             | mm | mm             | mm | mm             | N       | N      | N/µm <sup>3/2</sup> | N/µm                |
| K 32×32             | 1,5 | 3,969          | 56             | 85             | 71             | 8,4  | 80                          | 48             | 12 | 12             | 28 | 28             | 51 4 40 | 18 950 | 182                 | 840                 |
| K 40×40             | 1,5 | 6,350          | 70             | 100            | 85             | 8,4  | 98                          | 60             | 14 | 14             | 36 | 33,1           | 98 740  | 37 880 | 179                 | 1 050               |
| K 50×50             | 2,1 | 7,144          | 85             | 120            | 103            | 10,5 | 141                         | 100            | 16 | 16             | 75 | 42,3           | 206 120 | 68 900 | 296                 | 1 790               |



// KSK

### Nut type APE



### Application: Chapter 2.8.

| K d <sub>°</sub> ×b | i      | D <sub>w</sub> | D <sub>1</sub> | D <sub>2</sub> | D <sub>3</sub> | L <sub>2</sub> ±2<br>(APE) | L <sub>3</sub> | d    | assy.<br>arbor | ۲,                 | ٢,                | k                   | recirc.<br>type |
|---------------------|--------|----------------|----------------|----------------|----------------|----------------------------|----------------|------|----------------|--------------------|-------------------|---------------------|-----------------|
| -                   | -      | mm             | mm             | mm             | mm             | mm                         | mm             | mm   | mm             | N                  | N                 | N/µm <sup>3/2</sup> | -               |
| K 12×4              | 3      | 2,000          | 22             | 37             | 29             | 34                         | 10             | 4,5  | 9,7            | 7 390              | 4 005             | 92                  | I               |
| K 16×5              | 3      | 3,500          | 28             | 49             | 39             | 40                         | 10             | 6,4  | 12,7           | 18 280             | 9 760             | 89                  | I               |
| K 20×5              | 3      | 3,500          | 36             | 58             | 47             | 42                         | 10             | 6,4  | 16,7           | 24 860             | 11 920            | 115                 | I               |
| K 25×5              | 3<br>4 | 3,500          | 40             | 62             | 51             | 44<br>50                   | 12             | 6,4  | 21,7           | 31 550<br>42 070   | 13 620<br>17 450  | 148<br>197          | I               |
| K 32×5              | 4<br>6 | 3,500          | 50             | 80             | 65             | 50<br>60                   | 12             | 8,4  | 28,7           | 55 390<br>83 080   | 20 050<br>28 420  | 257<br>386          | I               |
| K 40×5              | 4<br>6 | 3,500          | 63             | 93             | 78             | 52<br>62                   | 14             | 8,4  | 36,7           | 70 920<br>106 370  | 22 480<br>31 860  | 327<br>490          | I               |
| K 40×10             | 4<br>6 | 7,144          | 63             | 93             | 78             | 83<br>104                  | 14             | 8,4  | 34             | 132 030<br>198 050 | 53 750<br>76 190  | 214<br>321          | I               |
| K 50×10             | 4<br>6 | 7,144          | 75             | 110            | 93             | 85<br>106                  | 16             | 10,5 | 43,8           | 178 780<br>268 160 | 64 260<br>91 080  | 275<br>412          | I               |
| K 63×10             | 4<br>6 | 7,144          | 90             | 125            | 108            | 89<br>108                  | 18             | 10,5 | 56,9           | 226 220<br>339 320 | 72 240<br>102 370 | 354<br>531          | I               |
| K 63×20             | 3<br>5 | 7,144          | 95             | 135            | 115            | 105<br>145                 | 20             | 13   | 56,9           | 169 020<br>281 700 | 56 090<br>87 030  | 264<br>440          | S               |

### Nut type AP for high-load ball screws







### Application: Chapter 2.3.

| D°× b    | i | D <sub>w</sub> | D <sub>1</sub> | D <sub>2</sub> | D <sub>3</sub> | L <sub>2</sub> ±2<br>(AP) | L3 | d  | assy.<br>arbor | ٢    | C <sub>a</sub> | recirc.<br>type |
|----------|---|----------------|----------------|----------------|----------------|---------------------------|----|----|----------------|------|----------------|-----------------|
| -        | - | mm             | mm             | mm             | mm             | mm                        | mm | mm | mm             | kN   | kN             | -               |
| K 63×20  | 6 | 15,875         | 105            | 145            | 125            | 220                       | 25 | 13 | 46,2           | 800  | 300            | I               |
| K 63×24  | 5 | 15,875         | 105            | 145            | 125            | 220                       | 25 | 13 | 46,2           | 670  | 250            | I               |
| K 80×20  | 7 | 15,875         | 125            | 165            | 145            | 230                       | 30 | 13 | 63,2           | 1400 | 440            | I               |
| K 80×24  | 6 | 15,875         | 125            | 165            | 145            | 230                       | 30 | 13 | 63,2           | 1200 | 390            | I               |
| K 100×20 | 7 | 15,875         | 150            | 202            | 176            | 232                       | 32 | 17 | 83,2           | 1850 | 530            | I               |
| K 100×24 | 6 | 15,875         | 150            | 202            | 176            | 232                       | 32 | 17 | 83,2           | 1600 | 460            | I               |
| K 125×20 | 7 | 15,875         | 185            | 238            | 212            | 245                       | 35 | 17 | 108,2          | 2300 | 600            | I               |
| K 125×24 | 6 | 15,875         | 185            | 238            | 212            | 245                       | 35 | 17 | 108,2          | 2000 | 520            | I               |
| K 125×32 | 5 | 20.638         | 185            | 238            | 212            | 245                       | 35 | 17 | 106.4          | 2100 | 620            |                 |



/-/ KSK

### Nut type B+B+K





NOTE: THE CUBE CAN BE REPLACED WITH CYLINDER HOUSING WITH A FLANGE

### Application: Chapter 2.2.

| K d <sub>°</sub> ×b | i           | D <sub>w</sub> | М  | N  | L,                | L <sub>10</sub> ±2<br>(B+B+K) | L, | k  | X <sub>1</sub> | x <sub>2</sub>  | у  | D <sub>4</sub> | ۲                         | C                       | k                 | R                    | recirc.<br>type |
|---------------------|-------------|----------------|----|----|-------------------|-------------------------------|----|----|----------------|-----------------|----|----------------|---------------------------|-------------------------|-------------------|----------------------|-----------------|
| -                   | -           | mm             | mm | mm | mm                | mm                            | mm | mm | mm             | mm              | mm | mm             | N                         | N                       | N/ųm³/²           | N/ųm                 | -               |
| K 16×3              | 3<br>4      | 2,000          | 38 | 36 | 38<br>44          | 52<br>58                      | 6  | 3  | 8              | 22<br>28        | 6  | 30             | 10 800<br>14 500          | 4980<br>6380            | 126<br>168        | 423<br>556           | E               |
| K 16×4              | 3<br>4      | 2,500          | 38 | 36 | 50<br>58          | 65<br>73                      | 6  | 3  | 10             | 30<br>38        | 5  | 33             | 14 100<br>18 800          | 6880<br>8800            | 110<br>147        | 431<br>566           | E               |
| K 20×3              | 3<br>4      | 2,000          | 42 | 40 | 38<br>44          | 54<br>60                      | 7  | 3  | 8              | 22<br>28        | 6  | 34             | 13 800<br>18 420          | 5590<br>7160            | 161<br>214        | 516<br>679           | E               |
| K 20×4              | 3<br>4      | 2,500          | 42 | 40 | 50<br>58          | 67<br>75                      | 7  | 3  | 10             | 30<br>38        | 6  | 37             | 18 260<br>24 350          | 7910<br>10130           | 141<br>188        | 532<br>690           | E               |
| K 20×5              | 3<br>4      | 3,175          | 46 | 44 | 62<br>72          | 82<br>92                      | 8  | 4  | 12             | 38<br>48        | 6  | 40             | 21 950<br>29 270          | 10400<br>13300          | 122<br>163        | 529<br>695           | E               |
| K 25×3              | 3<br>4      | 2,000          | 48 | 46 | 38<br>44          | 56<br>62                      | 8  | 2  | 8              | 22<br>28        | 6  | 42             | 17 760<br>23 690          | 6270<br>8030            | 204<br>272        | 628<br>827           | E               |
| K 25×4              | 3<br>4      | 2,500          | 48 | 46 | 50<br>58          | 69<br>77                      | 8  | 3  | 10             | 30<br>38        | 6  | 42             | 23 260<br>31 020          | 8890<br>11380           | 180<br>239        | 649<br>854           | E               |
| K 25×5              | 3<br>4      | 3,500          | 52 | 50 | 63<br>73          | 82<br>92                      | 8  | 3  | 12             | 39<br>49        | 7  | 48             | 31 550<br>42070           | 13620<br>17450          | 148<br>197        | 656<br>863           | I               |
| K 25×6              | 3<br>4      | 3,969          | 56 | 54 | 74<br>86          | 95<br>107                     | 8  | 5  | 12             | 50<br>62        | 6  | 49             | 34720<br>46290            | 15690<br>20090          | 137<br>182        | 653<br>860           | E               |
| K 25×8              | 2<br>3      | 5,000          | 56 | 54 | 76<br>92          | 94<br>110                     | 8  | 2  | 12             | 52<br>68        | 6  | 50             | 27240<br>40860            | 13910<br>19720          | 79<br>118         | 434<br>639           | E               |
| K 25×10             | 3           | 3,500          | 52 | 50 | 115               | 134                           | 8  | 3  | 20             | 75              | 7  | 48             | 31360                     | 13500                   | 146               | 651                  | I               |
| K 32×5              | 3<br>4<br>6 | 3,500          | 62 | 60 | 63<br>73<br>108   | 86<br>96<br>131               | 10 | 3  | 12<br>12<br>20 | 39<br>49<br>88  | 6  | 53             | 41540<br>55390<br>83080   | 15650<br>20050<br>28410 | 193<br>257<br>386 | 822<br>1082<br>1592  | I               |
| K 32×6              | 3<br>4      | 3,969          | 62 | 60 | 74<br>86          | 99<br>111                     | 10 | 5  | 12             | 50<br>62        | 6  | 56             | 47670<br>63560            | 18690<br>23930          | 179<br>239        | 831<br>1093          | E               |
| K 32×8              | 3<br>4      | 5,000          | 66 | 64 | 92<br>108         | 114<br>130                    | 10 | 2  | 12             | 68<br>84        | 7  | 60             | 57700<br>76950            | 24420<br>31270          | 156<br>208        | 827<br>1088          | E               |
| K 32×10             | 3<br>4      | 6,350          | 70 | 68 | 115<br>135        | 138<br>158                    | 10 | 3  | 20<br>25       | 75<br>85        | 10 | 60             | 65960<br>87940            | 30330<br>38840          | 134<br>179        | 804<br>1057          | I               |
| K 40×5              | 4<br>6      | 3,500          | 80 | 78 | 73<br>108         | 100<br>135                    | 12 | 3  | 12<br>20       | 49<br>88        | 10 | 75             | 70920<br>106370           | 22480<br>31860          | 327<br>490        | 1318<br>1940         | I               |
| K 40×6(L)           | 3<br>4<br>6 | 3,969          | 70 | 68 | 74<br>86<br>128   | 103<br>115<br>157             | 12 | 5  | 12             | 50<br>62<br>104 | 9  | 64             | 60720<br>80970<br>121450  | 20990<br>26880<br>38090 | 228<br>304<br>456 | 1014<br>1330<br>1906 | E               |
| K 40×8              | 3<br>4<br>6 | 5,000          | 80 | 78 | 93<br>109<br>164  | 120<br>136<br>191             | 12 | 3  | 20<br>20<br>30 | 53<br>69<br>104 | 10 | 75             | 74730<br>99650<br>149470  | 28070<br>35950<br>50950 | 200<br>266<br>399 | 1021<br>1344<br>1978 | I               |
| K 40×10             | 3<br>4<br>6 | 6,350          | 80 | 78 | 115<br>135<br>170 | 142<br>162<br>197             | 12 | 3  | 20<br>25<br>30 | 75<br>85<br>110 | 10 | 75             | 87800<br>117070<br>175600 | 36170<br>46330<br>65670 | 173<br>230<br>345 | 1009<br>1328<br>1955 | I               |
| K 40×12             | 3<br>4      | 7,938          | 88 | 86 | 140<br>164        | 166<br>190                    | 12 | 2  | 12             | 116<br>140      | 9  | 82             | 102800<br>137060          | 45240<br>57930          | 150<br>200        | 990<br>1300          | E               |
| K 40×20             | 2           | 6,350          | 88 | 86 | 150               | 178                           | 12 | 4  | 14             | 112             | 9  | 82             | 61400                     | 26180                   | 114               | 686                  | E               |
| K 50×5              | 4<br>6      | 3,500          | 90 | 88 | 71<br>91          | 98<br>118                     | 12 | 3  | 12<br>12       | 47<br>94        | 8  | 85             | 90880<br>136310           | 25060<br>35520          | 413<br>620        | 1598<br>2350         | I               |





### Nut type B+B+K





NOTE: THE CUBE CAN BE REPLACED WITH CYLINDER HOUSING WITH A FLANGE

### Application: Chapter 2.2.

| K d <sub>°</sub> ×b | i           | D <sub>w</sub> | М   | N   | L,                | L <sub>10</sub> ±2<br>(B+B+K) | L  | k  | <b>x</b> <sub>1</sub> | x <sub>2</sub>    | у    | D4  | ٢                             | ۲,                         | k                 | R                    | recirc.<br>type |
|---------------------|-------------|----------------|-----|-----|-------------------|-------------------------------|----|----|-----------------------|-------------------|------|-----|-------------------------------|----------------------------|-------------------|----------------------|-----------------|
| -                   | -           | mm             | mm  | mm  | mm                | mm                            | mm | mm | mm                    | mm                | mm   | mm  | N                             | N                          | N/ųm³/²           | N/ųm                 | -               |
| K 50×8              | 3<br>4<br>6 | 5,000          | 90  | 88  | 93<br>109<br>185  | 120<br>136<br>212             | 12 | 3  | 20<br>20<br>30        | 53<br>69<br>125   | 8    | 85  | 95 200<br>126 940<br>190 410  | 31540<br>40390<br>57250    | 254<br>339<br>508 | 1247<br>1640<br>2414 | I               |
| K 50×10             | 3<br>4<br>6 | 6,350          | 95  | 90  | 115<br>135<br>205 | 142<br>162<br>232             | 12 | 3  | 20<br>25<br>35        | 75<br>85<br>135   | 10   | 85  | 115 180<br>153 580<br>230 370 | 41990<br>53780<br>76220    | 220<br>295<br>442 | 1250<br>1645<br>2421 | I               |
| K 50×12             | 3<br>4      | 7,938          | 105 | 100 | 140<br>164        | 170<br>194                    | 14 | 2  | 12                    | 116<br>140        | 10   | 95  | 136820<br>182430              | 53950<br>69100             | 193<br>258        | 1243<br>1635         | E               |
| K 63×8              | 3<br>4      | 5,000          | 110 | 105 | 92<br>108         | 122<br>138                    | 14 | 2  | 14                    | 64<br>80          | 10   | 100 | 122480<br>163310              | 35300<br>45210             | 325<br>443        | 1525<br>2000         | E               |
| K 63×10             | 4<br>6      | 6,35           | 115 | 110 | 130<br>205        | 161<br>236                    | 14 | 3  | 20<br>35              | 75<br>135         | 12,5 | 105 | 197600<br>296400              | 60760<br>86115             | 354<br>531        | 2050<br>3020         | I               |
| K 63×12             | 4<br>6      | 7,938          | 115 | 110 | 165<br>227        | 202<br>264                    | 16 | 5  | 30<br>40              | 105<br>147        | 12,5 | 105 | 239400<br>359120              | 80110<br>113530            | 332<br>499        | 2040<br>2995         | I               |
| K 80×10             | 4<br>6      | 7,144          | 135 | 130 | 135<br>205        | 174<br>244                    | 18 | 3  | 25<br>35              | 85<br>135         | 12,5 | 125 | 301500<br>452260              | 82990<br>117610            | 457<br>685        | 2545<br>3747         | I               |
| K 80×12             | 3<br>4<br>6 | 7,938          | 135 | 130 | 142<br>166<br>230 | 183<br>207<br>271             | 18 | 5  | 25<br>30<br>40        | 92<br>106<br>150  | 12,5 | 125 | 239300<br>319070<br>478610    | 72190<br>92450<br>131030   | 323<br>430<br>645 | 1928<br>2536<br>3733 | I               |
| K 80×1/2"           | 3<br>4<br>6 | 7,938          | 135 | 130 | 157<br>185<br>237 | 198<br>226<br>278             | 18 | 5  | 30<br>30<br>40        | 97<br>125<br>157  | 12,5 | 125 | 239270<br>319030<br>478540    | 72170<br>92440<br>131000   | 323<br>430<br>645 | 1927<br>2536<br>3732 | I               |
| K 80×16             | 3<br>4<br>6 | 10,319         | 145 | 140 | 184<br>216<br>328 | 224<br>256<br>368             | 18 | 4  | 18                    | 148<br>180<br>292 | 14   | 135 | 303590<br>404780<br>607170    | 100760<br>129050<br>182890 | 277<br>369<br>554 | 1946<br>2560<br>3768 | E               |
| K 80×24             | 3<br>4<br>6 | 15,875         | 170 | 165 | 282<br>330<br>598 | 325<br>373<br>641             | 20 | 3  | 18                    | 246<br>294<br>562 | 15   | 160 | 413920<br>551890<br>827840    | 158380<br>202830<br>287460 | 212<br>283<br>424 | 1893<br>2490<br>3665 | E               |
| K 100×12            | 3<br>4      | 7,938          | 170 | 165 | 140<br>164        | 186<br>210                    | 22 | 2  | 18                    | 104<br>128        | 14   | 160 | 307740<br>410320              | 80930<br>103650            | 409<br>545        | 2345<br>3086         | E               |
| K 100×16            | 3<br>4      | 10,319         | 170 | 165 | 184<br>216        | 232<br>264                    | 22 | 4  | 20                    | 144<br>176        | 14   | 160 | 390520<br>520700              | 114105<br>146130           | 353<br>470        | 2383<br>3135         | E               |
| K 100×24            | 3<br>4<br>6 | 12,700         | 195 | 190 | 282<br>330<br>598 | 335<br>383<br>651             | 25 | 3  | 20                    | 242<br>290<br>558 | 16   | 185 | 453420<br>604560<br>906850    | 144250<br>184740<br>261820 | 312<br>416<br>624 | 2375<br>3124<br>4550 | E               |



# Nut type AP+A for balls screws with segment recirculation (selected types)







| K d <sub>°</sub> ×b | i                 | D <sub>w</sub> | <b>D</b> <sub>1</sub> | D <sub>2</sub> | D <sub>3</sub> | L <sub>3</sub> | d    | L <sub>6</sub> ±2<br>(AP+A) | assy.<br>arbor | ٢                          | ۲,                         | k                   | <b>R</b><br>(pro Fv=0,1Ca) | recirc.<br>type |
|---------------------|-------------------|----------------|-----------------------|----------------|----------------|----------------|------|-----------------------------|----------------|----------------------------|----------------------------|---------------------|----------------------------|-----------------|
| -                   | -                 | mm             | mm                    | mm             | mm             | mm             | mm   | mm                          | mm             | N                          | N                          | N/µm <sup>3/2</sup> | N/µm                       | -               |
| K 25×5              | 2,8<br>3,8<br>5,8 | 3,500          | 40                    | 62             | 51             | 12             | 6,4  | 70<br>80<br>116             | 21,5           | 32 400<br>43 960<br>67 100 | 13 700<br>17 800<br>25 600 | 151<br>285<br>313   | 670<br>890<br>1 330        | S               |
| K 25×10             | 2,8<br>3,8<br>4,8 | 3,500          | 40                    | 62             | 51             | 12             | 6,4  | 102<br>125<br>147           | 21,5           | 32 200<br>43 700<br>55 200 | 13 600<br>17640<br>21600   | 150<br>203<br>257   | 660<br>886<br>1 100        | S               |
| K 25×15             | 2,8               | 3,500          | 40                    | 62             | 51             | 12             | 6,4  | 132                         | 21,5           | 31 890                     | 13 400                     | 148                 | 650                        | S               |
| K 25×25             | 1,8               | 3,500          | 40                    | 62             | 51             | 12             | 6,4  | 118                         | 21,5           | 20 800                     | 9 000                      | 91                  | 410                        | S               |
| K 32×6              | 2,8<br>4,8        | 3,969          | 50                    | 80             | 65             | 12             | 8,4  | 79<br>98                    | 28,0           | 48 400<br>82 900           | 18 600<br>29 600           | 182<br>311          | 830<br>1 390               | S               |
| K 32×20             | 1,8<br>3,8        | 3,969          | 50                    | 80             | 65             | 12             | 8,4  | 138<br>206                  | 28,0           | 30 550<br>64 500           | 12 400<br>23 600           | 114<br>240          | 530<br>1 050               | S               |
| K 32×32             | 1,8               | 3,969          | 50                    | 80             | 65             | 12             | 8,4  | 166                         | 28,0           | 30 900                     | 12 200                     | 109                 | 510                        | S               |
| K 40×10             | 3,8<br>5,8        | 6,350          | 63                    | 93             | 78             | 14             | 8,4  | 126<br>166                  | 33,2           | 124 300<br>189 700         | 47 700<br>68 700           | 243<br>370          | 1 350<br>2 050             | S               |
| K 40×20             | 2,8<br>3,8        | 6,350          | 63                    | 93             | 78             | 14             | 8,4  | 175<br>230                  | 33,2           | 95 500<br>129 600          | 37 500<br>48 750           | 177<br>240          | 1 020<br>1 350             | S               |
| K 50×10             | 3,8<br>4,8        | 6,350          | 75                    | 110            | 93             | 16             | 10,5 | 145<br>165                  | 43,7           | 159 160<br>201 000         | 54 540<br>66 650           | 304<br>385          | 1 650<br>2 100             | S               |
| K 50×20             | 3,8<br>4,8        | 6,350          | 75                    | 110            | 93             | 16             | 10,5 | 208<br>248                  | 43,7           | 158 200<br>199 850         | 54 050<br>66 090           | 302<br>381          | 1 650<br>2 050             | S               |
| K 50×40             | 1,8<br>2,8        | 6,350          | 75                    | 110            | 93             | 16             | 10,5 | 212<br>292                  | 43,7           | 76 260<br>118 600          | 28 240<br>41 300           | 138<br>215          | 800<br>1 200               | S               |
| K 63×20             | 2,8<br>4,8        | 7,938          | 95                    | 135            | 115            | 20             | 13   | 203<br>266                  | 55,2           | 189 800<br>325 400         | 63 890<br>101 550          | 252<br>431          | 1 550<br>2 600             | S               |
| K 63×40             | 1,8<br>2,8        | 10,319         | 105                   | 145            | 125            | 20             | 13   | 239<br>312                  | 53,4           | 152 400<br>237 000         | 58 870<br>86 080           | 139<br>216          | 1 020<br>1 550             | S               |
| K 80×16             | 3,8<br>5,8        | 10,319         | 125                   | 165            | 145            | 20             | 13   | 215<br>279                  | 70,0           | 419 500<br>640 300         | 130 850<br>188 240         | 382<br>583          | 2 600<br>3 900             | S               |
| K 80×25             | 2,8<br>3,8        | 10,319         | 125                   | 165            | 145            | 25             | 13   | 240<br>290                  | 70,0           | 308 200<br>418 290         | 100 210<br>130 300         | 280<br>381          | 1 930<br>2 600             | S               |





### Nut type RMV (with inserted bearings)

Application: Chapter 2.7.

| d₀×P     | i | D <sub>1</sub> | D <sub>2</sub> | <b>D</b> <sub>3</sub> | <b>D</b> <sub>4</sub> | D <sub>5</sub> | D <sub>6</sub> | D <sub>7</sub> | D <sub>8</sub> | d    | L, | L <sub>2</sub> | L <sub>3</sub> ±2<br>(RMV) | L <sub>4</sub> | L <sub>5</sub> | L <sub>6</sub> | ۲,  | C,  |
|----------|---|----------------|----------------|-----------------------|-----------------------|----------------|----------------|----------------|----------------|------|----|----------------|----------------------------|----------------|----------------|----------------|-----|-----|
|          | - | mm             | mm             | mm                    | mm                    | mm             | mm             | mm             | mm             | -    | mm | mm             | mm                         | mm             | mm             | mm             | kN  | kN  |
| K 50×20  | 4 | 75             | 145            | 84                    | 165                   | 190            | 10,5           | 18             | 72             | M8   | 20 | 124            | 288                        | 8              | 1              | 11             | 182 | 68  |
| V EQUAE  | 4 | 77             | 155            | 04                    | 175                   | 200            | 10 E           | 10             | 76             | мо   | 20 | 113            | 306                        | 0              | 1              | 11             | 173 | 58  |
| K JUXZJ  | 5 |                | 100            | 94                    | 1/5                   | 200            | 10,5           | 10             | /0             | IVIO | 20 | 88             | 256                        | 0              | 1              | 11             | 216 | 70  |
| W (2)-20 | 4 | 02             | 100            | 110                   | 210                   | 240            | 17             | 20             | 100            | MO   | 22 | 148            | 352                        | 0              | 2              | 12             | 308 | 110 |
| K 03×20  | 5 | 92             | 190            | 110                   | 210                   | 240            | 13             | 20             | 100            | IVIð | 22 | 125            | 306                        | ð              | 2              | 13             | 385 | 134 |
| K 00. 20 | 4 | 127            | 255            | 175                   | 200                   | 210            | 17             | 20             | 120            | M10  | 25 | 148            | 358                        | 17             | <b>_</b>       | 12             | 462 | 159 |
| K 80×20  | 5 |                | 200            | 1/5                   | 280                   | 310            | 13             | 20             | 130            | MIU  | 25 | 125            | 312                        | IZ             | 3              | 13             | 578 | 192 |

M6×1 OIL-HOLE

### Nut type RMI (with integrated bearings)



Application: Chapter 2.7.

| d₀×P     | i | D <sub>1</sub> | D <sub>2</sub> | D <sub>3</sub> | D <sub>4</sub> | D <sub>s</sub> | D <sub>6</sub> | D <sub>7</sub> | d    | ų  | L <sub>2</sub> | L <sub>3</sub> ±2<br>(RMI) | L  | L,  | Ċ   | C   |
|----------|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------|----|----------------|----------------------------|----|-----|-----|-----|
|          | - | mm             | -    | mm | mm             | mm                         | mm | mm  | kN  | kN  |
| K 50×20  | 5 | 80             | 115            | 80             | 130            | 145            | 8,4            | 68             | M6   | 14 | 78             | 228                        | 22 | 1,5 | 208 | 68  |
| K 50×25  | 4 | 80             | 115            | 80             | 130            | 145            | 8,4            | 69             | M6   | 14 | 78             | 230                        | 23 | 1,5 | 164 | 55  |
| V 50,422 | 3 | 00             | 115            | 00             | 120            | 145            | 0.4            | 60             | MG   | 14 | 78             | 220                        | 22 | 1 5 | 120 | 42  |
| N JUXJZ  | 4 | 00             | 115            | 00             | 150            | 145            | 0,4            | 09             | IVIO | 14 | 78             | 284                        | 25 | 1,5 | 163 | 55  |
| K 63×20  | 5 | 96             | 150            | 100            | 170            | 190            | 10,5           | 88             | M8   | 20 | 115            | 275                        | 33 | 1,5 | 326 | 101 |
| K 63×25  | 4 | 105            | 160            | 105            | 180            | 200            | 10,5           | 92             | M8   | 20 | 115            | 282                        | 38 | 1,5 | 326 | 114 |
| K 63×32  | 3 | 105            | 160            | 105            | 180            | 200            | 10,5           | 92             | M8   | 20 | 115            | 276                        | 34 | 1,5 | 239 | 87  |





### **Trapezoidal screws**



Application: Chapter 2.9.

|                 |           | TRAPEZOI                                                                                                                         | DAL THREA<br>(m | D UNDER Č:<br>m) | 5N 01 4050 |                  |                |                | NU.            | F WITH FLA<br>(mm) | NGE |                |    | CYLINDR<br>(m | ICAL NUT<br>m) |
|-----------------|-----------|----------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|------------|------------------|----------------|----------------|----------------|--------------------|-----|----------------|----|---------------|----------------|
| Tr d×P          | d         | Р                                                                                                                                | d <sub>2</sub>  | d,               | H,         | L <sub>MAX</sub> | D <sub>1</sub> | D <sub>4</sub> | D <sub>5</sub> | 6×D <sub>6</sub>   | կ   | L <sub>2</sub> | L, | D             | C              |
| <b>Tr 16×4</b>  | 16        | 4                                                                                                                                | 14,0            | 11,5             | 2,0        | 500              | 28             | 48             | 38             | 6                  | 44  | 12             | 8  | 36            | 24             |
| <b>Tr 18×4</b>  | 18        | 4                                                                                                                                | 16,0            | 13,5             | 2,0        | 500              | 28             | 48             | 38             | 6                  | 44  | 12             | 8  | 45            | 30             |
| <b>Tr 20×4</b>  | 20        | 4                                                                                                                                | 18,0            | 15,5             | 2,0        | 800              | 32             | 55             | 45             | 7                  | 44  | 12             | 8  | 45            | 30             |
| Tr 22×5         | 22        | 5                                                                                                                                | 19,5            | 16,5             | 2,5        | 800              | 32             | 55             | 45             | 7                  | 44  | 12             | 8  | 45            | 33             |
| Tr 24×5         | 24        | 5                                                                                                                                | 21,5            | 18,5             | 2,5        | 1 250            | 32             | 55             | 45             | 7                  | 44  | 12             | 8  | 50            | 36             |
| <b>Tr 26×5</b>  | 26        | 5                                                                                                                                | 23,5            | 20,5             | 2,5        | 1 250            | 35             | 55             | 45             | 7                  | 44  | 12             | 8  | 50            | 39             |
| <b>Tr 28×5</b>  | 28        | 28         5         25,5         22,5         2,5         1           20         6         270         220         20         1 |                 |                  |            |                  |                | 62             | 48             | 7                  | 46  | 14             | 8  | 60            | 42             |
| <b>Tr 30×6</b>  | 30        | 6                                                                                                                                | 27,0            | 23,0             | 3,0        | 1 250            | 38             | 62             | 50             | 7                  | 46  | 14             | 8  | 60            | 45             |
| <b>Tr 32×6</b>  | 32        | 6                                                                                                                                | 29,0            | 25,0             | 3,0        | 1 250            | 40             | 64             | 54             | 7                  | 50  | 16             | 10 | 60            | 48             |
| <b>Tr 36×6</b>  | 36        | 6                                                                                                                                | 33,0            | 29,0             | 3,0        | 2 000            | 45             | 70             | 58             | 7                  | 59  | 16             | 10 | 75            | 54             |
| <b>Tr 40×7</b>  | 40        | 7                                                                                                                                | 36,5            | 32,0             | 3,5        | 2 000            | 63             | 95             | 78             | 9                  | 73  | 16             | 10 | 80            | 60             |
| <b>Tr 44×7</b>  | 44        | 7                                                                                                                                | 40,5            | 36,0             | 3,5        | 3 150            | 72             | 110            | 93             | 11                 | 73  | 16             | 10 | 80            | 66             |
| <b>Tr 48×8</b>  | 48        | 8                                                                                                                                | 44,0            | 39,0             | 4,0        | 3 150            | 75             | 110            | 93             | 11                 | 97  | 16             | 10 | 90            | 72             |
| <b>Tr 50×8</b>  | 50        | 8                                                                                                                                | 46,0            | 41,0             | 4,0        | 4 000            | 75             | 110            | 93             | 11                 | 97  | 18             | 10 | 90            | 75             |
| Tr 50×12        | 50        | 12                                                                                                                               | 44,0            | 37,0             | 6,0        | 4 000            | 75             | 110            | 93             | 11                 | 130 | 18             | 10 | 90            | 125            |
| <b>Tr 60×9</b>  | 60        | 9                                                                                                                                | 55,5            | 50,0             | 4,5        | 4 000            | 90             | 125            | 108            | 11                 | 100 | 18             | 12 | 100           | 90             |
| <b>Tr 70×10</b> | 70        | 10                                                                                                                               | 65,0            | 59,0             | 5,0        | 5 000            | 105            | 145            | 125            | 13                 | 120 | 20             | 14 | 110           | 105            |
| <b>Tr 80×10</b> | 80        | 10                                                                                                                               | 75,0            | 69,0             | 5,0        | 5 000            | 105            | 145            | 125            | 13                 | 120 | 20             | 14 | 120           | 120            |
| RECOMMEN        | DED MATEI | RIAL                                                                                                                             |                 |                  |            |                  | RECOMN         | NENDED MA      | ATERIAL        |                    |     |                |    |               |                |

ČSN 414260 (67SiCr5)

 $R_m \min = 700 MPa$ 

RECOMMENDED MATERIAL ČSN 423018 (CuSn8) bar material ČSN 423123 (CuSn12) castings ČSN 422425 cast iron

### **PRECISION CLASSES**

Thread shafts and nuts are manufactured in three precision classes:

1 - fine (thread grinding machines, CNC boring machines and other machines with higher accuracy),

2 - intermediate (cutting machines, lathes, milling machines, horizontal boring machines) - standard

3 - rough (machines without any special requests regarding accuracy)

|                                               | P     | RECISION CLA | ss    |  |  |  |
|-----------------------------------------------|-------|--------------|-------|--|--|--|
|                                               | 1 2   |              |       |  |  |  |
| TRAVEL DEVIATION PER 300mm THREAD LENGTH [mm] | 0,024 | 0,052        | 0,081 |  |  |  |

### **Thread length**

| NOMINAL<br>DIAMETER [mm] |       | PRECISION CLASS |       |
|--------------------------|-------|-----------------|-------|
|                          | 1     | 2               | 3     |
| 16–18                    | -     | 500             | 1 250 |
| 20-22                    | 320   | 800             | 2 000 |
| 24-32                    | 500   | 1 250           | 3 150 |
| 33-36                    | 800   | 2 000           | 4 000 |
| 40-44                    | 1 250 | 3 150           | 5 000 |
| 48–50                    | 2 000 | 4 000           | 5 000 |
| 60–70                    | 3 150 | 5 000           | 5 000 |
| 80                       | 4 000 | 5 000           | 5 000 |



# 3. TECHNICAL PARAMETER TABLES

### **Guide rods**



### Application: Chapter 2.10.

| NOMINAL<br>DIAMETER d | MAXIMUM<br>LENGTH L <sub>MAX</sub> | LOWER LIMIT<br>DEVIATION h6 | t  | LOWER LIMIT<br>DEVIATION h7 | t  | WEIGHT |
|-----------------------|------------------------------------|-----------------------------|----|-----------------------------|----|--------|
| mm                    | mm                                 | μm                          | μm | μm                          | μm | kg×m⁻¹ |
| 16                    | 1 000                              | -11                         | 5  | -18                         | 9  | 1,58   |
| 20                    | 1 500                              | -13                         | 6  | -21                         | 10 | 2,47   |
| 25                    | 2 000                              | -13                         | 6  | -21                         | 10 | 3,85   |
| 30                    | 3 000                              | -13                         | 6  | -21                         | 10 | 5,55   |
| 40                    | 3 500                              | -16                         | 8  | -25                         | 12 | 9,87   |
| 50                    | 4 500                              | -16                         | 8  | -25                         | 12 | 16,50  |
| 60                    | 5 250                              | -19                         | 9  | -30                         | 15 | 22,20  |
| 80                    | 5 250                              | -19                         | 9  | -30                         | 15 | 39,50  |

### Example of radial clamping holes



| d  | D₄−6H | D, | h  | h,  | а   | b   |
|----|-------|----|----|-----|-----|-----|
| mm | -     | mm | mm | mm  | mm  | mm  |
| 16 | M6    | 8  | 9  | 1,5 | 60  | 80  |
| 20 | M8    | 10 | 10 | 2,0 | 80  | 100 |
| 25 | M10   | 12 | 10 | 2,0 | 100 | 120 |
| 30 | M10   | 14 | 16 | 3,0 | 120 | 160 |
| 40 | M12   | 18 | 16 | 3,0 | 140 | 200 |
| 50 | M16   | 24 | 20 | 4,0 | 160 | 240 |
| 60 | M20   | 24 | 25 | 3,5 | 180 | 280 |
| 80 | M24   | 28 | 25 | 3,5 | 200 | 340 |





# LPA bearing supports for shaft ends mounting

LPA is the brand for axial bearing support with a radial ball bearing for mounting of shaft ends. It is delivered with the grease filling as a standard.



| brand type |                |                |     |                | basic dir<br>(m | mensions<br>ım) |      |    |      |    | bearing<br>type |
|------------|----------------|----------------|-----|----------------|-----------------|-----------------|------|----|------|----|-----------------|
|            | D <sub>1</sub> | D <sub>2</sub> | D,  | D <sub>4</sub> | A               | В               | C    | D  | d    | L  | -               |
| LPA 15     | 44             | 70             | 56  | 15             | 54              | 8,5             | 5,7  | 10 | 5,3  | 18 | 6 202           |
| LPA 17     | 50             | 78             | 63  | 17             | 60              | 9,5             | 6,8  | 11 | 6,4  | 20 | 6 203           |
| LPA 20     | 58             | 94             | 75  | 20             | 72              | 12,0            | 9,0  | 15 | 8,4  | 22 | 6 204           |
| LPA 25     | 63             | 98             | 80  | 25             | 76              | 14,0            | 9,0  | 15 | 8,4  | 24 | 6 205           |
| LPA 30     | 75             | 118            | 95  | 30             | 90              | 16,0            | 11,0 | 18 | 10,5 | 26 | 6 206           |
| LPA 35     | 85             | 138            | 115 | 35             | 105             | 18,0            | 11,0 | 18 | 10,5 | 28 | 6 207           |
| LPA 40     | 95             | 156            | 130 | 40             | 118             | 18,0            | 13,0 | 20 | 13,0 | 30 | 6 208           |

# LPE (LPED) bearing supports for shaft ends mounting

LPE (LPED) is the brand for axial bearing support with a ball bearing with angular contact for mounting of driven shaft ends – it substitutes the former non-preloaded support brand LPB.



| brand type      |                |      |     |                |                |     | basic d | imension | 5  |      |    |    |      |         | bearing |
|-----------------|----------------|------|-----|----------------|----------------|-----|---------|----------|----|------|----|----|------|---------|---------|
|                 |                | (mm) |     |                |                |     |         |          |    |      |    |    | type |         |         |
|                 | D <sub>1</sub> | D,   | D,  | D <sub>4</sub> | D <sub>5</sub> | A   | В       | C        | D  | d    | E  | L  | L    | М       | -       |
| LPE 15, LPED 15 | 44             | 70   | 56  | 15             | 56             | 54  | 9       | 5,7      | 10 | 5,3  | 10 | 37 | 59   | M15×1   | 7 202   |
| LPE 17, LPED 17 | 50             | 78   | 63  | 17             | 65             | 60  | 10      | 6,8      | 11 | 6,4  | 10 | 39 | 63   | M17×1   | 7 203   |
| LPE 20, LPED 20 | 58             | 94   | 75  | 20             | 74             | 72  | 12      | 9        | 15 | 8,4  | 10 | 44 | 72   | M20×1   | 7204    |
| LPE 25, LPED 25 | 63             | 98   | 80  | 25             | 80             | 76  | 14      | 9        | 15 | 8,4  | 11 | 48 | 78   | M25×1,5 | 7 205   |
| LPE 30, LPED 30 | 75             | 118  | 95  | 30             | 92             | 90  | 18      | 11       | 18 | 10,5 | 12 | 50 | 82   | M30×1,5 | 7 206   |
| LPE 35, LPED 35 | 85             | 138  | 115 | 35             | 110            | 105 | 20      | 11       | 18 | 10,5 | 14 | 54 | 88   | M35×1,5 | 7 207   |
| LPE 40, LPED 40 | 95             | 156  | 130 | 40             | 120            | 118 | 22      | 13       | 20 | 13   | 14 | 56 | 91   | M40×1,5 | 7 208   |



# LPC bearing supports for shaft ends mounting

LPC is the brand for radial bearing support with a radial ball bearing for mounting of shaft ends. It is delivered with the grease filling as a standard.





| brand type | basic dimensions<br>(mm) |    |      |     |      |    |      |     |     |    |      | bearing<br>type |       |
|------------|--------------------------|----|------|-----|------|----|------|-----|-----|----|------|-----------------|-------|
|            | $D_4$                    | D  | d    | Н   | J    | K  | R    | S   | Т   | V  | Х    | Y               | -     |
| LPC 15     | 15                       | 15 | 8,4  | 56  | 12,0 | 24 | 41,0 | 60  | 82  | 30 | 32,5 | 18              | 6 202 |
| LPC 17     | 17                       | 18 | 10,5 | 63  | 13,5 | 27 | 46,0 | 68  | 92  | 35 | 37,0 | 18              | 6 203 |
| LPC 20     | 20                       | 18 | 10,5 | 72  | 13,5 | 27 | 49,0 | 75  | 98  | 40 | 42,5 | 20              | 6 204 |
| LPC 25     | 25                       | 18 | 10,5 | 78  | 13,5 | 27 | 51,5 | 80  | 103 | 45 | 47,5 | 22              | 6 205 |
| LPC 30     | 30                       | 20 | 13,0 | 88  | 13,5 | 31 | 59,0 | 90  | 118 | 50 | 53,0 | 26              | 6 206 |
| LPC 35     | 35                       | 20 | 13,0 | 100 | 17,5 | 35 | 65,0 | 100 | 130 | 55 | 66,0 | 26              | 6 207 |
| LPC 40     | 40                       | 26 | 17,0 | 110 | 18,0 | 36 | 75,0 | 118 | 150 | 60 | 65,0 | 30              | 6 208 |

# LPH (LPHD) bearing supports for shaft ends mounting

LPH (LPHD) is the brand for radial bearing support with a ball bearing with angular contact for mounting of driven shaft ends – it substitutes the former non-preloaded support brand LPD.



| brand type      | basic dimensions<br>(mm) |    |      |    |     |      |    |    |    |      |     |     | bearing<br>type |      |    |       |
|-----------------|--------------------------|----|------|----|-----|------|----|----|----|------|-----|-----|-----------------|------|----|-------|
|                 | D <sub>4</sub>           | D  | d    | E  | Н   | J    | K  | L  | L, | R    | S   | T   | V               | Х    | Y  | -     |
| LPH 15, LPHD 15 | 15                       | 15 | 8,4  | 10 | 56  | 18,5 | 12 | 37 | 59 | 41   | 60  | 82  | 30              | 32,5 | 18 | 7 202 |
| LPH 17, LPHD 17 | 17                       | 18 | 10,5 | 10 | 63  | 19,5 | 14 | 39 | 63 | 46   | 68  | 92  | 35              | 37   | 18 | 7 203 |
| LPH 20, LPHD 20 | 20                       | 18 | 10,5 | 10 | 72  | 22   | 14 | 44 | 72 | 49   | 75  | 98  | 40              | 42,5 | 20 | 7 204 |
| LPH 25, LPHD 25 | 25                       | 18 | 10,5 | 11 | 78  | 24   | 14 | 48 | 78 | 51,5 | 80  | 103 | 45              | 47,5 | 22 | 7 205 |
| LPH 30, LPHD 30 | 30                       | 20 | 13   | 12 | 88  | 25   | 15 | 50 | 82 | 59,0 | 90  | 118 | 50              | 53   | 26 | 7 206 |
| LPH 35, LPHD 35 | 35                       | 20 | 13   | 14 | 100 | 27   | 15 | 54 | 88 | 65,0 | 100 | 130 | 55              | 66   | 26 | 7 207 |
| LPH 40, LPHD 40 | 40                       | 26 | 17   | 14 | 110 | 28   | 20 | 56 | 91 | 75,0 | 118 | 150 | 60              | 65   | 30 | 7 208 |



# MK housing for nut mounting

MK is the brand for a housing used to mount nuts with flange AP, AP+A, APR, APE.



| brand type |      | basic dimensions (mm) |    |                |     |    |    |    |    |     |   |     |     |     |    |    |
|------------|------|-----------------------|----|----------------|-----|----|----|----|----|-----|---|-----|-----|-----|----|----|
|            | C    | d                     | D  | D <sub>1</sub> | D,  | Н  | J  | K  | L  | М   | n | N   | S   | T   | Х  | Y  |
| MK 3236    | 9,0  | 8,4                   | 15 | 36             | 47  | 50 | 30 | 50 | 10 | M10 | 6 | M6  | 68  | 88  | 0  | 45 |
| MK 2040    | 9,0  | 8,4                   | 15 | 40             | 51  | 52 | 34 | 54 | 10 | M10 | 6 | M6  | 72  | 92  | 0  | 45 |
| MK 2545    | 9,0  | 8,4                   | 15 | 45             | 58  | 58 | 34 | 54 | 10 | M10 | 6 | M6  | 80  | 100 | 0  | 45 |
| MK 2550    | 11,0 | 10,5                  | 18 | 50             | 65  | 66 | 38 | 60 | 11 | M12 | 6 | M8  | 90  | 112 | 0  | 45 |
| MK 3256    | 11,0 | 10,5                  | 18 | 56             | 71  | 70 | 38 | 60 | 11 | M12 | 6 | M8  | 95  | 118 | 0  | 45 |
| MK 4063    | 13,0 | 13,0                  | 20 | 63             | 78  | 78 | 40 | 66 | 13 | M16 | 8 | M8  | 102 | 128 | 15 | 30 |
| MK 4070    | 13,0 | 13,0                  | 20 | 70             | 85  | 80 | 40 | 66 | 13 | M16 | 8 | M8  | 108 | 134 | 15 | 30 |
| MK 5075    | 17,5 | 17,0                  | 26 | 75             | 93  | 90 | 48 | 80 | 16 | M20 | 8 | M10 | 124 | 156 | 15 | 30 |
| MK 5085    | 17,5 | 17,0                  | 26 | 85             | 103 | 96 | 48 | 80 | 16 | M20 | 8 | M10 | 132 | 164 | 15 | 30 |







# 4.1. Ball screw life

### CALCULATION OF EQUIVALENT ROTATIONAL SPEED AND LOAD

In case of variable rotational speed and variable load, the parameters  $\mathbf{n}_{m}$  and  $\mathbf{F}_{ma}$  are used for the life calculation under **ISO 3408**, where  $\mathbf{n}_{m}$  (min<sup>-1</sup>) is the mean rotational speed and  $\mathbf{F}_{ma}$  (N) is the mean inner axial load (i.e. a mean load which is formed by the external axial load and the preload).

where  ${\boldsymbol{q}}$  is the average action time in %

$$\begin{split} n_m &= \sum_{j=1}^n \frac{q_j}{100} \times n_j \\ F_{ma(1),(2)} &= \sqrt[3]{\sum_{j=1}^n F_{a(1),(2)j}^3 \times \frac{n_j}{n_m} \times \frac{q_j}{100}} \end{split}$$

and for constant rotation speed

$$\begin{split} F_{ma(1),(2)} &= \sqrt[3]{\sqrt{\sum_{j=1}^{n} F_{a(1),(2)j}^{3} \times \frac{q_{j}}{100}}} \\ F_{a(1),(2)} &= F_{v} \times \left(1 + \frac{F_{1,2j}}{2,83 \times F_{v}}\right)^{3/2} \end{split}$$

where  ${\bf F}_{\rm a}$  is the inner axial load which is calculated according to:

where  $\mathbf{F}_{\mathbf{v}}$  is the preload (as a standard  $\mathbf{F}_{\mathbf{v}}=\mathbf{0.1}\times\mathbf{C}_{\mathbf{a}}$ ),  $\mathbf{F}$  is the force from the external axial load, indexes 1 resp. 2 determine the direction of load and indexes (1) resp. (2) determine relation to the nut 1 or nut 2



Note: If  $F_{1,2j} \ge 2.83 \times F_{v_{r}}$  then  $F_{a(1),(2)j} = F_{1,2j}$ 



# 4. CALCULATION PART



### LIFE

in revolutions:

$$L_{1,2} = \left(\frac{C_{a} \times f_{m}}{F_{ma(1),(2)}}\right)^{3} \times 10^{6} \qquad \qquad L_{h} = \frac{L}{n_{m} \times 60}$$

Where  $C_a$  is the basic dynamic axial load rating (**N**), corresponding to the permanent constant load, which the ball screw can theoretically transfer within 1 million revolutions,  $f_m$  is the coefficient of quality impact and material status (as a standard  $f_m = 1.25$ ).

in hours:

Note: The previous calculation supposes a preloaded nut. In the case of a nut with backlash the mean external load  $\mathbf{F}_{m12}$  is used instead of the mean inner load  $\mathbf{F}_{ma(1),(2)}$  in the formula for calculation of  $\mathbf{L}_{1,2}$ .

in hours:

in hours

 $L_{ha} = L_h \times f_{a1}$ 

for variable rotational speed:

for constant rotational speed:

$$F_{m1,2} = \sqrt[3]{\sum_{j=1}^{n} F_{1,2j}^3 \times \frac{n_j}{n_m} \times \frac{q_j}{100}} \qquad \qquad F_{m1,2} = \sqrt[3]{\sum_{j=1}^{n} F_{1,2j}^3 \times \frac{q_j}{100}}$$

### **RESULTING LIFE**

The resulting life of a both sides loaded ball screw with a preloaded nut, or with non-preloaded nut is:

in revolutions:

$$L = \left(L_{(1)}^{\frac{10}{9}} + L_{(2)}^{\frac{10}{9}}\right)^{\frac{9}{10}} \qquad \qquad L_h = \frac{L}{n_m \times 60}$$

### LIFE CORRECTION WITH RESPECT TO THE REQUIRED RELIABILITY

in revolutions:

 $L_a = L \times f_{a1}$ 

reliability factor  $\mathbf{f}_{a1}$ 

| reliability (%) | f <sub>a1</sub> |
|-----------------|-----------------|
| 90              | 1.00            |
| 95              | 0.62            |
| 96              | 0.53            |
| 97              | 0.44            |
| 98              | 0.33            |
| 99              | 0.21            |

reliability of determined life







# 4.2. Ball screw limit values determination

### CALCULATION OF MAXIMUM ROTATIONAL SPEED OF THE BALL SCREW SHAFT

The following relation for maximum permitted rotational speed  $\mathbf{n}_{max}$  of the ball screw shaft is valid:

$$n_{max} = 0.8 \times n_{kr}$$

$$n_{kr} = \frac{1 \times 10^7 \times f_n \times d_0}{L_8^2}$$

Where  $\mathbf{n}_{kr}$  is the critical rotational speed determined by the shaft material properties, its mounting and length,  $\mathbf{d}_{o}$  is the nominal diameter of the ball screw,  $\mathbf{L}_{s}$  is the distance between shaft supports and  $\mathbf{f}_{n}$  is a coefficient based on the shaft mounting.

### CALCULATION OF MAXIMUM AXIAL LOAD WITH RESPECT TO THE COLUMN STRENGTH OF THE BALL SCREW SHAFT

The following relation for determination of the maximum axial load **F**<sub>lalmax</sub> with respect to the buckling rigidity of the ball screw shaft is valid:

$$F_{(a)max} = 0,33 \times Q_{kr} \qquad \qquad Q_{kr} = \frac{\pi^3 \times 500 \times d_0^3}{f_v \times L_8^2}$$

Where  $\mathbf{Q}_{\mathbf{k}_{\mathbf{r}}}$  is the critical loading axial force derived from the material properties of the ball screw shaft, its mounting and length,  $\mathbf{d}_{0}$  is the nominal diameter of the ball screw,  $\mathbf{L}_{s}$  is the distance between shaft supports and  $\mathbf{f}_{v}$  is a coefficient according to the shaft mounting.

### Determination of the coefficients f, and f

 $f_v = 4,00$   $f_n = 3,5$ 









#### Diagram of maximum permitted rotation speed







# 5.1. Quality

Customer satisfaction is the main motto of our business activities and the basic element of the strategy of our Company. Our quality management system is based on our long-term tradition and experience in the area of precise engineering. Our quality management system is set and implemented in compliance with the corporate quality policy and objectives.

Our quality management system is in compliance with the **ISO 9001** standard. It is organized and managed in such a way that the Company has absolute insurance and a documented overview of the perfect functioning of all internal processes influencing the product quality in all phases of the production process.

In the area of purchasing of material, components and services our Company focuses on selected long-term reliable qualified sub-suppliers from which we have the guarantee of perfect quality and reliability of deliveries.

Verification of the product quality in the manufacturing process is based on the principle of personal responsibility of each employee for the quality of the of the operation that he provides. Above that there is systematic quality control supervision of the production managers and of designated specialists from the quality control department.

During the final inspection and testing of the readymade assemblies qualified personnel work in a separate air conditioned laboratory equipped with testing equipment whose parameters correspond to the demanding requirements of the standards for verification and testing of ball screws.

The Company's products are released for shipment only after passing all strict and demanding tests (for example by means of laser interferometer, on a special test bench for evaluation of the passive resistance, by digital profilometer and surface profiler, etc.).

The management of the Company pays close attention to the quality of our products not only in the course of their regular meetings, but also by complete and comprehensive support of the process of improvement of the quality management system in compliance with the **EN ISO 9001** standards.











# 5.2. General terms & conditions

### I. BASIC PROVISIONS

These "Terms&Conditions" form integral parts of the Purchase Contract. In the event of deviation from the Terms & Conditions in the Purchase Contract, the General Terms&Conditions shall become supportive, especially for issues not expressly agreed to in the provisions in deviation therefrom. Contractual relationship between a seller and a buyer shall be established by virtue of making a Purchase Contract (hereafter only the "Contract"). A statement sent through fax or e-mail shall have the same effect as a written statement.

### **II. MAKING A CONTRACT AND CONTRACT CONTENTS**

All deliveries, including the future ones, shall be carried out exclusively under these "Terms&Conditions". This excludes application of the Buyer's (customer's) purchase conditions, unless expressly accepted by the Seller.

Silence on a seller' side to respond to the delivery of terms and conditions of purchase to the Seller (even if delivered repeatedly) shall not be considered as the acceptance thereof.

Oral or written arrangements made prior to the Contract being signed by both parties, relating to a transaction under the Contract to be concluded later, become null and void if not included in the Contract or if not in compliance with these Terms&Conditions.

### III. DELIVERY, TERM OF DELIVERY, DELIVERY DELAY

The term of delivery shall start running from the date following the one in which the Contract has been signed by both contracting parties. If the Contract is signed by both parties on different dates, the date decisive for the term of delivery shall always be the later date. The term of delivery shall be deemed observed if prior to its expiration the subject of delivery is placed at the buyer's disposal for acceptance in a destination specified in the Contract. The Buyer shall not be entitled to accept the goods without prior goods receipt notification sent by the Seller at least 48 hours before the date of delivery of the goods. The Buyer shall be obliged to render to the Seller all the assistance necessary for the goods acceptance. In case the Buyer does not take delivery of goods without undue delay within a specified time after obtaining the seller's goods receipt notification, the goods shall be deemed delivered once the Seller has sent the above notification, and thus the entire purchase price shall become due and the Seller shall have the right to issue immediately an invoice for payment of the purchase price. The Buyer shall be obliged to pay to the Seller, in addition to the purchase price, a consideration for the goods storage of 1.5 % of the purchase price for every commenced month pursuant to the Contract. In case the Buyer does not take delivery of goods within 6 months from the goods receipt notification, he shall have the right to withdraw from the Contract. Partial deliveries are permitted, if not agreed otherwise.

The risk of damage to the goods shall pass to the Buyer on delivery of the goods to the Buyer or when acceptance of goods is delayed by the Buyer. The Buyer shall acquire an ownership right to the goods upon paying a full purchase price as well as all other monetary claims pursuant to the Contract.

The Seller shall not be obliged to deliver the goods pursuant to the Contract in case he has any pending claims due against the Buyer (including debts for contractual penalties, interests on late payments or damage compensations).

The date of delivery shall be postponed by the time the Buyer is late on payment of the purchase price or any other due payment claims of the Seller or of advances for the purchase price, or is in delay with delivery of the drawing documentation or potentially of other manufacturing or transport arrangements, the delivery of which has been agreed to between the Buyer and the Seller, or the delivery of which is indispensable for due performance of the Contract from the Seller's side.

The term of delivery may be appropriately extended, especially during strikes or closures as well as in the creation of unpredictable obstacles that have originated independent of the Seller's will, if these obstacles have clearly significant influence on completion or delivery of the subject of delivery. In case the term of delivery has already expired, a new reasonable term of delivery shall be determined. The Seller will inform the Buyer about beginning and end of the obstacles as soon as possible. In instances when the Seller bears responsibility for extension of the term of delivery or for any its agreed prolongation, he shall be obliged to do his best to shorten the delay as much as possible.

#### **IV. PRICE AND PAYMENT CONDITIONS**

The purchase price of goods pursuant to the Contract is fixed. The Buyer shall be liable to pay to the Seller, in addition to the agreed purchase price, VAT at its currently valid rate.

If not agreed otherwise in the Contract, the goods shall be delivered on the basis of EXW term of delivery from Blanenská 1277, Kurim, postal code 664 34, Czech Republic, under the INCOTERMS 2000. The purchase price does not include transport packaging, packing costs, loading of goods to a means of transport, nor costs related to other charges, such as taxes, customs duty, insurance, etc. All these costs shall be borne by the Buyer. The used transport packaging and fixing material will be returned only if specifically requested and agreed.

Holding back payments or setoff of mutual debts due to the Buyer's counterclaims is not permitted.

If not agreed otherwise, the price of goods shall be payable prior to delivery.

The Seller shall be entitled to shorten maturity period of issued invoices for 14 days if the Buyer is repeatedly late in payment of his liabilities or the Buyer's financial circumstances have significantly worsened. In such instances the Seller may withhold any unperformed deliveries arising from all Purchase Contracts without violating the Contract or the right to withdraw therefrom.

#### **V. WARRANTY CONDITIONS**

At ordering the goods, the Buyer shall specify exactly the requirements on the goods, i.e. quantity, mode of delivery, characteristics, qualitative parameters, preservation, package, and the mode and form of demonstration of compliance with the specified requirements. The goods must have the quality according to the Buyer's requirement stated in the validly concluded Agreement, otherwise according to the relevant technical standard, or the characteristics common for the relevant article, respectively. The warranty period on new products shall amount to 12 months and on the services provided (repairs, cooperation production, etc.) to 6 months, provided that the Operating Conditions for Transport, Handling, Assembly and Operation of Engineering Products of KULICKOVÉ ŠROUBY KURIM, a.s. are observed.

The warranty period shall start running as from the day of handover of the goods to the Buyer or the forwarder, i.e. from the date



of dispatch. The Buyer may complain about obvious defects of the goods not later than at the inspection of the goods performed immediately after the reception of the goods. Any hidden defects and defects that are found after the delivery of the goods to the Buyer must be complained about by the Buyer without unnecessary delay after the detection of the defect. The Buyer may complain about any defects of the goods only if the Buyer demonstrates that such defects did not emerge in consequence of inexpert handling or inexpert use of the goods, and that they were not caused by outer circumstances that the Buyer was not to anticipate. Any complaint shall be filed in time if it has been delivered to the Seller in written form, with exact specification of the defect and of the claims from liability for defects, not later than by the last day of the warranty period. In case of any complaint filed duly and in time, the Seller shall repair or replace the defective parts.

#### VI. WITHDRAWAL FROM CONTRACT

The Seller has the right to withdraw from the Contract, in particular if the Buyer is late on payment of the purchase price or any other due payment claims of the Seller and in case of major breach of the Contract from the Buyer's side.

In the event of withdrawal from the Contract by either the Seller or the Buyer for reasons set forth in the Contract or in these delivery terms and conditions or by virtue of law, the Buyer shall be obliged to return the goods to the Seller within 3 days from notification of withdrawal and, at the same time, to pay to the Seller all costs incurred to him in relation to the Contract performance. In addition, the Buyer shall be obliged to compensate any damage to the goods and wear-out that have occurred after goods delivery to the Buyer. The Seller shall be obliged to return to the Buyer the purchase price already paid up, however with the right to deduct the costs incurred in relation to the Contract performance as well as damage compensation covering potential goods damages and wear-out. The Seller shall be obliged to return to the Buyer the above specified part of purchase price within 14 days upon returning the goods.

Withdrawal from the Contract does not affect the penalty claims agreed to in the Contract. These claims do not extinguish as a result of termination of the contractual relationship due to withdrawal from the Contract.

### **VII. PENALTIES FOR CONTRACT BREACH**

From the moment when the Buyer falls into default in the payment of purchase price for the goods, the Buyer can be charged, under reservation of other rights, a contractual penalty of 0.1% of the sum outstanding on a daily basis.

In the event of Buyer's withdrawal from the Contact for other reasons than those specified in Clause VI hereof, the Buyer shall be obliged to pay to the Seller a contractual penalty of 50% of the purchase price. In case the Buyer gets in default in returning the goods as a result of termination of the Contract due to withdrawal of either party, the Buyer shall pay to the Seller a contractual penalty of 0.1 % of the goods purchase price for every commenced day of the default in returning the goods.

If the delivery of goods has been provably delayed through the fault of the Seller and the delay is longer than 20 working days, and the delayed delivery has caused provable damages to the Buyer, for such a delay the Buyer, with exclusion of other claims, shall be entitled to claim a contractual penalty of 0.1 % from the delayed goods value for every day of delay, however up to the maximum of 50 % of the value of delayed goods.

In the event defects in goods that prevent from or make more difficult using such goods or jeopardize safety cause damages to the Buyer, the Buyer shall have the right to claim, during the entire



#### **VIII. FORCE MAJEUR**

In the event of circumstances that cannot be foreseen in signing the Contract and will create an obstacle for the Seller in the fulfilment of his contractual obligations, the Seller shall be entitled to postpone fulfilment of obligations by a period for which the obstacle prevailed as well as a time necessary for reassuming normal activity. In all cases of circumstances excluding responsibility (including accidental delay of sub-deliveries, transport corporate breakdowns and similar acts of Force Majeur that will affect fulfilment of the Seller's contractual obligations), the Seller shall have the right to terminate the Contract without indemnifying the ordering party. The Buyer may ask the Seller for a statement whether or not he is to terminate the Contract, or whether he is prepared to continue in the contract performance in a reasonable alternative time for delivery. If the Seller fails to express himself forthwith, the Buyer shall have the right to terminate the Contract. The Buyer cannot refuse partial fulfilment so far completed.

### IX. APPLICABLE LAW FOR SETTLING DISPUTES

Both parties will seek to reach an agreement in all issues that may arise from this Contract. All potential disputes will be settled in compliance with the law of the Czech Republic. The parties agree that any potential dispute originated between them on the basis of legal relations arising from the Contract or in connection therewith shall be adjudicated in arbitration proceedings by the Court of Arbitration attached to the Economic Chamber of the Czech Republic and Agricultural Chamber of the Czech Republic in accordance with its Rules of Procedure by three arbiters, where either party shall appoint one arbiter and they will then elect the presiding arbiter. In the event that either of the parties fails to appoint an arbiter, the President of the Court of Arbitration in compliance with its Rules of Procedure shall appoint the arbiter for that particular party. The language of procedure shall be Czech. Both parities undertake to accept, without reservation, decisions of the Court of Arbitration.

#### **X. FINAL STIPULATIONS**

Any amendment and alterations to contracts between the Seller and the Buyer shall only be valid in writing. Legal relations not regulated by these Terms&Conditions or by the Contract shall follow the Czech law and provisions of the Act No. 513/1991 of Coll., the Commercial Code, and regulations relating to the UN Convention on Contracts for the International Sale of Goods (Vienna Convention of 1980). By this express declaration made in compliance with Section 401 of the Commercial Code, the Buyer extends the limitation period of the creditor's rights (the Seller) arising from the Contract or these Terms&Conditions for a period of 10 years. If one or more parts of these Terms&Conditions or of the Contract become legally unenforceable, the parties commit to replace them with new provisions that will follow economic objectives of these Terms&Conditions or the Contract. Other unaffected provisions of these Terms&Conditions or of the Contract shall henceforth remain in force. The parties are obliged to keep confidential all information ascertained in connection with the Contract, not to disclose the information without prior written consent of the other party nor to use such information for their own benefit or for benefit of others during the entire term of these contracts a well as after their termination. The Terms&Conditions shall enter in force and become effective as of December 1<sup>st</sup>, 2011.





# 5.3. Operating conditions

### A. BALL SCREW AND PRODUCTS DERIVED FROM IT

The ball screw (hereinafter referred to only as "BS") requires, similarly to ball bearing, working conditions and principles corresponding to its accuracy and design, divided into the following categories:

### A.I. TRANSPORT AND HANDLING

- During transport and handling, the anticorrosive package must be protected against breach or wear
- Protection against impacts must be provided (the nut body must not be strained by impacts and radial load)
- Handling the handling points are identified by pictograms on the packages
- During handling, the shaft must be maintained with minimum bending from own weight; the distances between the supports during storage must correspond maximally to 1/4 of the shaft length; vertical suspension of BSs with pre-tensioned nuts is allowed
- Any inclination of non-pre-tensioned ball screws may cause unscrewing of the screw or the nut
- BS stacking (putting on each other) in cardboard boxes or without solid wooden packages is not allowed
- After removing the protective anticorrosive package consisting of Cortec VpCI-126 foil, the product must not be exposed to corrosive environment; environment C1 according to CSN ISO 9223 is allowed for the indispensable period before assembly into the equipment; otherwise, the product surface must be adequately preserved

### A.II. ASSEMBLY

- It is forbidden to disassemble the nut from the ball screw shaft or interfere in the product in other way
- The positioning of the shaft axis must be in accuracy up to 0,02mm/m to the guide plain; the perpendicularity of the area of contact for the face of the nut flange must be up to 0,02mm/m to the longitudinal axis
- The thread surface must be protected against dirt, liquids and damage
- Before filling with grease and actual operation, the shaft must be cleaned
- The nut must not be subject to impacts, tilting moment and radial load

### A.III. OPERATION

- The BS must be operated in non-aggressive environment without dirt, liquids and dust, unless the BS is intended for such environment
- The nut may be strained only in axial direction
- Bending from own weight must be suitably eliminated in long and thin screws
- The BS must be lubricated in operation (bearing greases according to degree 2 of DIN51825 and oils with minimum viscosity of 50mm2/s at 40°C); standard lubrication is lossmaking without filtration and reuse; losses of lubricant in operation must be compensated by additional lubrication with stress on verification of compatibility of lubricants from different manufacturers

- The BS operating temperature is from -30 to +90°C and it is further limited by the lubricant applied
- The maximum revolutions are limited by the gear design (so called revolution factor) and the lubricant applied and they must not be exceeded
- The operating load must correspond to the specification for which the product was designed (load spectrum, Ca, Co), while respecting the strength of the material of the screw shaft (min. strength - Rm=600MPa) and of the nut condition (throughhardened to 60HRc)
- The BS must be protected against dynamic impacts and overloads over the Co value
- During operation, only the useful path of the shaft thread according to DIN69051 may be used for load

### **A.IV. OTHER PROVISIONS**

The manufacturer shall not be liable for any damage caused by inexpert transport, handling, assembly and operation of the BS or by use of the BS for other purpose that it was designed for.

#### **B. TRAPEZOIDAL SCREW AND PRODUCTS DERIVED FROM IT**

The trapezoidal screw (hereinafter referred to only as "Tr") requires working conditions and principles corresponding to its accuracy, function and design, divided into the following categories:

#### **B.I. TRANSPORT AND HANDLING**

- During transport and handling, the anticorrosive package must be protected against breach or wear
- Protection against impacts must be provided for (the shaft and nut surfaces are soft)
- Handling the handling points are identified by pictograms on the packages
- During handling, the shaft must be maintained with minimum bending from own weight; the distances between the supports during storage must correspond maximally to 1/4 of the shaft length; vertical suspension is allowed
- Stacking (putting on each other) in cardboard boxes or without solid wooden packages is not allowed
- After removing the protective anticorrosive package consisting of Cortec VpCI-126 foil, the product must not be exposed to corrosive environment; environment C1 according to CSN ISO 9223 is allowed for the indispensable period before assembly into the equipment; otherwise, the product surface must be adequately preserved

### **B.II. ASSEMBLY**

- It is forbidden to interfere in the product
- The positioning of the nut must be provided in accuracy of 0,05 to 0,02 mm/m (according to the Tr screw model) to the longitudinal axis of the shaft
- The thread surface must be protected against dirt, liquids and damage
- Before filling with grease and actual operation, the shaft must be cleaned
- The nut must not be subject to tilting moment and radial load





#### **B.III. OPERATION**

- The Tr screw must be operated in non-aggressive environment without dirt, liquids and dust, unless the screw is intended for such environment
- The nut may be strained only in axial direction and it must be guided coaxially to the shaft
- Bending from own weight must be suitably eliminated in long and thin screws
- The Tr screw must be lubricated in operation with a lubricant non-aggressive against the materials used (greases or pastes for sliding guides and gear or sliding oils); standard lubrication is loss-making without filtration and reuse; the losses of lubricant in operation must be compensated by additional lubrication with stress on verification of compatibility of lubricants from different manufacturers
- The operating temperature is from -30 to +90°C and it is further restricted by the lubricant applied and by the nut material
- The maximum revolutions and the maximum sliding speed must not be exceeded
- The safe buckling strength of the shaft of the Tr screw and the bearing power of the nut must not be exceeded
- The operating load must correspond to the specification for which the product was designed, while respecting the strength of the material of the screw shaft (min. strength - Rm=600MPa) and of the nut (usually CuSn8 or CuSn12)

### **B.IV. OTHER PROVISIONS**

The manufacturer shall not be liable for any damage caused by inexpert transport, handling, assembly and operation or by use of the Tr screw for other purpose that it was designed for.

### C. GUIDE RODS AND OTHER PRODUCTS

The guide rods of circular section (hereinafter referred to only as "GR") require working conditions and principles corresponding to their accuracy, function and design, divided into the following categories:

### **C.I. TRANSPORT AND HANDLING**

- During transport and handling of GRs and OPs, the package must be protected against breach or wear
- During handling, the GRs must be maintained with minimum bending from own weight; the distances between the supports during storage must correspond maximally to 1/4 of the shaft length; vertical suspension is allowed
- Stacking (putting on each other) in cardboard boxes or without solid wooden packages is not allowed
- After removing the protective anticorrosive package consisting of Cortec VpCI-126 foil, the product must not be exposed to corrosive environment; environment C1 according to CSN ISO 9223 is allowed for the indispensable period before assembly into the equipment; otherwise, the product surface must be adequately preserved

#### C.II. ASSEMBLY

- It is forbidden to interfere in the product
- The positioning of the GRs must be provided for in required accuracy according to the guide used and the relevant purpose
- The product surface must be protected against dirt, liquids and damage

#### **C.III. OPERATION**

- The GRs and OPs screw must be operated in nonaggressive environment without dirt, liquids and dust, unless they are intended for such environment
- Bending from own weight must be suitably eliminated in long and thin GRs (radial fixation of the rods)
- The rolling friction guides used for GRs must be suitably lubricated during operation
- The GR operating temperature is limited by the lubricant and the rolling friction guide used
- The operating load must correspond to the specification for which the product was designed, while respecting the strength of the material of the GR (min. strength - Rm=600MPa)

### **C.IV. OTHER PROVISIONS**

The manufacturer shall not be liable for any damage caused by inexpert transport, handling, assembly and operation or by use of the GRs or OPs for other purpose that they were designed for.

### **D. CONCLUDING PROVISIONS**

The Operating Conditions come into force and effect as from 1/7/2010.















### **OFFICIAL ADDRESS**

KULIČKOVÉ ŠROUBY KUŘIM, a.s. Blanenská 1277/37 664 34 Kuřim CZ – Czech Republic phone: +420 533 033 710 fax: +420 533 033 734 e-mail: info@ks-kurim.cz



www.ks-kurim.cz